elemzés címkével jelölt bejegyzések

Online kutatásmódszertan – a keretrendszer, amit az Adatlabornál használunk

Az elmúlt 2 évben sok online projekt elemzését készítettük el – főleg webshop és startup vonalon. Így óhatatlanul is kialakult egyfajta keretrendszer, amit mostmár folyamatosan használunk. Ezt az anyagot általában az Adatvezérelt Marketing Képzésünk bevezetéseként szoktam bemutatni, de most szerettem volna nagyobb közönséggel is megosztani.

A keretrendszer – azaz az elemzési folyamat, amit használunk, nagyon egyszerű és 4 lépcsőből áll.

online kutatásmódszertan
Az Adatvezérelt Marketing Képzés vetített anyagából

Online kutatásmódszertan – a keretrendszer, amit az Adatlabornál használunk bővebben…

Honnan tanuljunk az adatelemzésről? – 2. rész

Ebben a bejegyzésben megosztok néhány könyvet és online kurzust, amelyeket az utóbbi időben elolvastam/megnéztem és színvonalasnak, hasznosnak találtam. Sok a (big) data-s tananyag a neten, hát még könyvek formájában – sok köztük a selejt is. De szerencsére van köztük jó néhány nagyon jó anyag is.

(Az első részben már mutattam 3 könyvet: http://adatlabor.hu/big-data-konyv-1-resz/)

Íme újabb 4 tananyag, amit érdemes magadévá tenni, ha érdekel a téma!

Honnan tanuljunk az adatelemzésről? – 2. rész bővebben…

Látogatók és forgalom mérése UTM tag segítségével

Papp Gábor
Papp Gábor, thepitch.hu

Mai vendégszerzőnk Papp Gábor a thepitch.hu alapítója, SEO és online marketing szakértő! Egy kifejezetten fontos témát mutat be nekünk: a linkkövetést UTM-tag-ekkel!

Amikor 2016 januárjában elindítottuk a The Pitch Online Marketing blogját, akkor határozott célkitűzés volt előttünk, hogy tudatosan és adatvezérelt módon fogjuk gyűjteni és elemezni az adatokat. Ezeket pedig nem csak azért gyűjtjük, hogy ott legyenek a Google Analytics fiókban, hanem ténylegesen teszünk is azért, hogy ezekből a technikai információkból üzleti információt faragjunk. Vagyis olyan infót, amiből később üzleti értéket lehet teremteni.

Akik számára a tartalommarketing és az elkészült tartalom megosztása egy fontos marketingcsatorna, azok számára az utm tagek használata az egyik legjobb és leghasznosabb elemzést segítő megoldás. Látogatók és forgalom mérése UTM tag segítségével bővebben…

Adatvezérelten – az első pár lépés

Az utóbbi időben több képzésünkön is előjött a kérdés, hogy ha egy már működő online biznisz per-pillanat még semmilyen szinten sem elemzi a saját adatait, akkor mégis hogyan lehet és hogyan érdemes belevágni.
A hosszútávú, profi megoldás persze az, hogy ha felépíted minél előbb a saját adattárházadat, amiből függetlenül és rugalmasan tudod elemezni az adataidat. De hát azért elég gyakori, hogy erre se pénz, se idő, se emberi erőforrás nem áll rendelkezésre.
Ha ez Veled is így van, akkor most leírok három projektet, amivel kis ráfordítással nagy hasznot érhetsz el.
De mindenek előtt: mi lehet ez a haszon?

Adatvezérelten – az első pár lépés bővebben…

A robotok ébredése

“…Manapság az online világban nem csak mi vagyunk, emberek, hanem rajtunk kívül robotok és botnetek milliói is a miénkhez hasonló aktivitásokat hajtanak végre a különböző weboldalakon, alkalmazásokban, sokszor elég nagy kárt okozva ezzel az online reklámpiac szereplőinek. Mi azzal foglalkozunk, hogy olyan technológiát fejlesszünk ki, ami képes megkülönböztetni az emberi interakciókat a robotokétól…”

Nagy István

István Data Scientist-ként azon dolgozik az Enbrite.ly-ban, hogy megtisztítsák az online hirdetési piacot azoktól a robotoktól, akik lekattintják az online hirdetések nagy részét, ezzel kárt okozva a hirdetőknek, vagy akár a publishereknek is. Mindezt úgy, hogy a rengeteg hozzájuk érkező adatból be tudják azonosítani, hogy az adott online tevékenységet egy ember vagy egy robot végzi.
A B-DATA2 konferencián is erről fog beszélni – hogyan működik ez és milyen adatokból tudunk dolgozni.
A robotok ébredése bővebben…

Az IT és az üzlet keresztútja

“…”szerencsére” jött a válság. Ezt megelőzően a sales terület hasraütés-szerűen mondta meg, hogy mikor és hol mit fog árulni és hogyan. Nem mértek semmit, mert látták, hogy jönnek az új ügyfelek, jön a volumen. Nem volt arra igény, hogy elemezz, jött a pénz és ettől mindenki boldog volt. Aztán minden megváltozott…”

lindwurm.tamas
Lindwurm Tamás

A B-DATA2 Konferencia egyik előadója Lindwurm Tamás lesz, akivel egy rövid interjút is készítettünk, hogy jobban megismerjétek.

Tamás 2008 óta foglalkozik adatelemzési, döntéstámogatási  és adatvizualizációs feladatokon a pénzügyi és telekommunikációs szektorban. Részt vett többek között CRM-bevezetés, adatpiac-építés, kampányoptimalizálás, ügyfélérték-számítás és szegmentációs projekteken.

Az IT és az üzlet keresztútja bővebben…

Első adatvezérelt projekt

Sok cél, sok adat, sok elemzési lehetőség, sok információ… Egy már működő vállalkozás esetében egyik pillanatról a másikra adatokat bevonni a döntési folyamatokba nem is olyan könnyű. Ennek az oka pedig az, hogy rengeteg fajta adatvezérelt projekt létezik. Így kiválasztani az elsőt, ami igazán hasznos, nehéz.
Most felsorolok 3 projektet, amelyek az elmúlt évek tapasztalatai alapján jó első lépések lehetnek az adatvezéreltség rögös útján.

1. Konverzió optimalizálás AB-teszttel

Ez a projekt iszonyatosan egyszerű és rögtön látványos eredményt hoz, ami nem más mint a konverziónövekedés. Azt pedig mindenki szereti. :-) (Az AB-tesztelésről már többször is írtam, úgyhogy most a részletekbe nem mennék bele.) A folyamat az, hogy:

I. Megkeresel egy UX-problémát a honlapodon.
II. Keresel rá alternatív megoldásokat.
III. Teszteled, hogy melyik a legjobb megoldás.
IV. A legjobb megoldást kiteszed élesbe.
V. Újrakezded egy új problémával.

Amit sosem szabad kihagyni, az az AB-tesztet megelőző kutatás. Sokszor látom, hogy az emberek elkezdenek csakúgy megérzésből AB-tesztelni. Néha összejön, néha pedig nem… Amit mi szeretünk csinálni: teszt előtt hőtérképes elemzés, Google Analytics elemzés és legalább 3 user-teszt egy adott oldalra. Ez alapján sokkal célzottabb és hatékonyabb AB-teszteket tudunk összerakni.

2. Stratégia adatalapon

A hosszútávú döntésekben segít. Éppen emiatt nem olyan látványos és azonnali az eredménye. Amiért mégis szokták szeretni a döntéshozók, mert konkrét számokat látnak a stratégiáik mögött.

Sokfajta metódus létezik. Én a 4DX módszertant találtam eddig  a legjobbnak. Ennek a lényege, hogy van egy főcélod (pl. bevétel?) és keresel ehhez támogató alcélokat (ún. lag-ek) és az alcélokat támogató tevékenységeket (ún. lead-ek). A struktúra akkor működik, ha minden eleme mérhető is.

3. Triggerek és automation-ök

Ebben a pontban általában e-mail marketing-ről beszélünk. De lehet szó push-notification-ökről, sms-kampányról, in-site pop-up-okról, akármiről.

A lényeg, hogy ha követed a felhasználóid viselkedését, akkor bizonyos viselkedésminta aktiválhat bizonyos üzeneteket. Pl. ha látod, hogy egy felhasználó 100-szor megnézte a landing-edet, de még egyszer sem vásárolt onnan, akkor küldhetsz neki egy levelet, hogy személyes support-ot kínálsz neki, hogy könnyebb legyen a vásárlás.
Ha látod, hogy egy másik felhasználó vásárolt nálad 10 terméket, küldhetsz neki egy e-mail-t, hogy köszönöd a hűségét, itt egy 50%-os kupon, etc…

Ezek az ún. triggerek azonnali és látványos hatást fejtenek ki a lemorzsolódó felhasználók visszatérésére, hiszen személyre szabott üzenetet küld a megfelelő embereknek a megfelelő pillanatban.

Merre tovább?

Ez a 3 projekt (1. kutatás + AB-teszt, 2. Stratégia felépítés, 3. Trigger-ek beállítása) az, ami legjobb első adatvezérelt projektek között van. Látva az eredményességüket pedig könnyebb már továbblépni a saját adatbázisok felépítése és a finomabb (és még hasznosabb) adatos projektek felé.

Többet akarsz tudni a témáról? Gyere el az Adatvezérelt Marketing Tréningünkre!

Tomi

Szignifikáns vagy sem? Így mérd az AB-teszted eredményességét

Az egyik leggyakoribb kérdés, amit AB-teszteléssel kapcsolatban kapni szoktam, hogy ugyan hány felhasználóra van szükség a teszteléshez? Természetesen, mint a kérdések 99%-ra, itt is az a válasz: attól függ!

Mitől függ?

Alapvetően 3 dologtól:

  1. Az alapkonverziós arányodtól (%)
  2. A javulás nagyságától, amit elvársz a teszttől (%)
  3. A szignifikancia-mutatótól, amit elvársz a teszttől (~95%)

Ha ezek megvannak, akkor dobd be az Optimizely – Sample Size Calculator-ba és már meg is kapod a bűvös számot:

Optimizely - Sample Size Calculator
Optimizely – Sample Size Calculator

Ahogy látod, az adott példában, a 3%-os alapkonverzió, 20%-os növekedésének 95%-os biztonságához: 10170 ember kell verziónként!

Azaz, ha hetente 10.000 látogatód van, akkor egy 2 verziós AB-teszt 2 hét alatt fog kipörögni.

3 egyéb mód a szignifikáns kontra nem szignifikáns kérdés eldöntésére:

Azt tudni kell, hogy az Optimizely motorja elég szigorúan méri, hogy egy eredmény szignifikáns vagy sem.
Ez így jól is van, de én azért 3 egyéb módon szoktam még ellenőrizni, hogy biztonsággal valós eredményeket kaptunk-e. Egyébként ha ez a 3 mérés mind pozitív eredményt hoz, akkor gyakran nem is várom meg az Optimizely szuper-szigorú méréseit. Íme:

1. T-próba:

A legklasszikusabb AB-teszt ellenőrző művelet. Van online elérhető felhasználó-barát, kitölthetős verziója (pl. ITT). Száraz tudomány – ha itt kapsz egy P-value < 0.05, akkor 95%+ eséllyel valóban az lesz a nyertes, akit jelenleg nyerésre áll. De önmagában ez még nem elég.

AB-teszt szignifikancia kalkulátor, szignifikáns vagy sem?
VWO, AB-teszt szignifikancia kalkulátor

2. Trend chart-ok:

Az Optimizely mutatja azt is, hogy hogyan alakulnak a trendek. Ez nem egy nagy varázslat. Ha 2 héten keresztül végig ugyanazt látod és még a T-próbád is jó eredményt dob, akkor már majdnem biztos lehetsz benne, hogy nyertél.

AB teszt trendek, szignifikáns vagy sem?
AB teszt trendek

3. AAB(B) teszt:

Ez egy expert-trükk! ;-)
Már a kísérlet elejétől érdemes az eredeti verziónak egy változtatás nélküli verzióját is elkészíteni. Így lesz 2 A verziód – vagy akár akár 2 B verziód is. Ha a két hasonló verzió között nincs eltérés eredményben, akkor az már jót jelent! Ezt kombinálva a trend-chart és a T-próba módszerrel, padlóra küldted a szignifikáns kontra nem-szignifikáns kérdést!

AABB teszt - konverziók, szignifikáns vagy sem?
AABB teszt – konverziók

Azt hiszem, ezzel mindent tudsz, amit az AB-teszt eredményének a biztonságosságáról tudnod kell!

Ha szeretnél hasonló bejegyzéseket olvasni, iratkozz fel a Hírlevélre!

Ha részletesen érdekel a téma, gyere el az Adatvezérelt Marketing Tréningünkre!

Tomi

Big Data könyv 1. rész – Mit érdemes olvasni?

A nyáron volt egy kis időm olvasgatni, így hát beszereztem több Big Data könyvet is!

Big Data Könyv 1 - Schönberger, Cukier1. Viktor Mayer-Schönberger & Kenneth Cukier: Big Data

értékelés: 2/10
Őszintén: nagyon megbántam, hogy rászántam az időmet erre az írásra. 200 oldalon keresztül sztorizgat, hasonlatokat hoz – néha nem is Big Data-ról – és a tényleges tartalmát kb 5 oldalban össze lehetne foglalni. A stílusa élvezhetetlen, nagyon szájbarágós, folyamatosan ismételgeti önmagát – ráadásul olyan dolgokban (korreláció vs. kauzalitás), amiben nem is feltétlenül van igaza. A jó történeteket (Google Flue Trends, Netflix, Amazon, etc.) egyébként már mind-mind olvashattuk online a kiemelt hírek között is az elmúlt 10 évben.
Azoknak ajánlom, akik szeretnének egy új – trendi – társalgási témát bedobni az esti borozgatásokhoz a baráti társaságban… De gyakorlatiasságra vagy arra, hogy megtudd, mi az a Big Data, ne számíts! (Ez csak azért szomorú, mert – megtévesztő módon – ez a könyv címe.)

Big Data könyv 2 - Lean Analytics2. Croll & Yoskovitz: Lean Analytics

értékelés: 9/10
Ellentétben az előző könyvvel, ezt 100%-osan ajánlom mindenkinek, aki adatvezérelten akar akármilyen bizniszt felépíteni. Nem kifejezetten Big Data könyv, sokkal inkább adatstratégiáról szól, de nagyszerű gondolatindító. Ha big data-val fogsz dolgozni üzleti fókusszal, akkor egyértelműen alapmű. Ha pedig ugyanezt teszed, de technológiai fókusszal, akkor ez a minimum, amit látnod kell az üzleti oldalról.
A könyv legnagyobb előnye, hogy nagyon-nagyon gyakorlatias. 31 fejezeten keresztül leírja az összes módszertant, illetve tesztelési, elemzési és egyéb praktikákat, amelyeket a menő “data-driven” cégek már kipróbáltak és sikerrel alkalmaznak. Minden fejezet végén megkapod a saját kis “házi feladatodat”, így rövid távon gyakorlatba ültetheted a tudást.

Big Data Könyv 3 - I heart logs3. Jay Kreps: I heart Logs

értékelés: 8/10
Ha az előző írás a startégiai, akkor ez a technológiai alapmű. Jay Kreps a LinkedIn adatinfrastruktúráját építette fel és közben olyan Big Data technológiát támogató open-source projekteket hozott létre, mint a Kafka, a Samza vagy az Azkaban. Ebből sejtheted, hogy nagyjából a füzet minden szava arany. Sajnos elég rövid (50 oldal), de egyúttal tömör és lényegretörő is. Mire a végére jutsz, biztosan érteni fogod, hogy mi az a log, mi köze van ennek a Big Data-hoz és hogy hogyan kell összedrótozni egy normális adatinfrastruktúrát. Betekintést kaphatsz abba, amit a LinkedIn anno a saját bőrén tanult meg – ami nem csak érdekes, de iszonyatosan hasznos is.

A könyveket itt veheted meg:
I heart Logs: http://shop.oreilly.com/product/0636920034339.do
Lean Analytics: http://leananalyticsbook.com

Ha pedig tréningen vagy képzésen ismerkednél meg az alapokkal:

Big Data Képzés: KLIKK!
Adatvezérelt Marketing Képzés: KLIKK!

Tomi

Miért szeretem az adatelemzést?

Mostanában – így félévzárás után – sokat gondolkoztam azon, hogy vajon miért is szeretem az adatelemzést?

3 dolgot találtam.

1. Tényeket közlünk.

Több weblap-dizájner ismerősöm is van. Legtöbbjük iszonyatosan tehetséges, szuper weblapokat dizájnolnak, működő, korszerű kódokat tesznek mögéjük – de valahogy mindig van legalább egy ember az ügyfél oldalán, akinek valami apróság nem tetszik. “Szerintem ez nagyon zsúfolt”. Ez “nem a mi stílusunk”. “Valahogy olyan kicsik a képek.”

Az adatelemzésben azt szeretem, hogy bár mi is ugyanazokkal a felületekkel foglalkozunk, mint a webdizájnerek – amit mi mondunk, az objektív és emiatt elég nehezen támadható. :-) Egész egyszerűen számokkal tudjuk megmondani, hogy mi az, ami működik, mi az ami kevésbé… és százalékra (vagy forintra) pontosan azt is ki tudjuk mutani, hogy mennyivel jobb ez a valami, mint a másik valami.

Még nem volt olyan ügyfelünk, akinek ha megmutattuk, hogy ha ez a gomb zöld és nem szürke, akkor az +30% bevételt jelent (persze ez csak egy sarkított példa), akkor arra azt mondta, hogy “Hmm… de ez a zöld nem a mi stílusunk.” Ez persze nem csak azért jó érzés, mert nem kell felesleges dolgokon veszekedni, hanem azért is, mert mindenki dolgát megkönnyíti az, ha tiszta tényszerű adatok alapján tud véleményt formálni.

2. Emberekkel foglalkozunk.

Annak ellenére, hogy a fenti bekezdés alapján az adatelemzés egy elég objektív szakmának tűnik, a valóságban szubjektumokkal fogalalkozunk. Emberi viselkedéssel. Emberi döntésekkel. Emberi dilemákkal.

Miért ide kattint valaki és nem oda? Miért veszi a drágább csomagot? Miért kattan rá egy termékre? Miért utál valamit, amit nem is ismer? Mennyire tudatos? Érdekli egyáltalán, amit modani akarunk neki? Megtalálja, amit keres? Miért viselkedik úgy, ahogy viselkedik?

Ezek a kérdések borzasztóan izgalmasak, mert az embernek a tudatos és tudatalatti gondolatait kutatják… Nem lehet mindig mindegyikre választ kapni, de ha csak egy nap egy rejtélyt sikerül feltárni, akkor már rögtön úgy érzi az (adatelemző) ember, hogy egy kicsit jobban érti, hogy embertársai, mit, miért, hogyan, mikor és meddig csinálnak… És ez jó érzés!

3. Minden nap tanulunk.

Hogy csak egy példát ragadjak ki: az elmúlt egy évben viszonylag sok webshop-pal dolgoztunk. Végigelemeztük és optimalizáltuk a felületeiket: landing oldalaikat, üzeneteiket, termék- és listaoldalaikat, kosárfolyamataikat. Tanultunk nap mint nap, az adatokra és a felhasználók reakcióira, viselkedésére támaszkodva.

Nem állítom, hogy mindent tudok az e-commerce bizniszekről, de az biztos, hogy – ha belenézek az adataikba – bármelyik webshop-nak tudnék legalább egy olyan dolgot mondani, amit a többiek jobban csinálnak, elleshetnek, átvehetnek tőle.

Ezeket a dolgokat pedig nem lehet tankönyvől vagy egyetemeken megtanulni. Ezeket a dolgokat folyamatosan kutatni és mérni kell. Idézőjelesen “a vásárlóktól kell megtanulni”. Azért szeretem az adatelemzést, mert erre a tanulásra is lehetőséget ad.

Úgyhogy egyelőre maradunk a szakmában.
Ha szeretnél szakmai cikkeket olvasni a témában, iratkozz fel a hírlevélre és értesítünk az új bejegyzésekről!

Tomi