bevétel címkével jelölt bejegyzések

Adatvezérelten – az első pár lépés

Az utóbbi időben több képzésünkön is előjött a kérdés, hogy ha egy már működő online biznisz per-pillanat még semmilyen szinten sem elemzi a saját adatait, akkor mégis hogyan lehet és hogyan érdemes belevágni.
A hosszútávú, profi megoldás persze az, hogy ha felépíted minél előbb a saját adattárházadat, amiből függetlenül és rugalmasan tudod elemezni az adataidat. De hát azért elég gyakori, hogy erre se pénz, se idő, se emberi erőforrás nem áll rendelkezésre.
Ha ez Veled is így van, akkor most leírok három projektet, amivel kis ráfordítással nagy hasznot érhetsz el.
De mindenek előtt: mi lehet ez a haszon?

Adatvezérelten – az első pár lépés bővebben…

A robotok ébredése

“…Manapság az online világban nem csak mi vagyunk, emberek, hanem rajtunk kívül robotok és botnetek milliói is a miénkhez hasonló aktivitásokat hajtanak végre a különböző weboldalakon, alkalmazásokban, sokszor elég nagy kárt okozva ezzel az online reklámpiac szereplőinek. Mi azzal foglalkozunk, hogy olyan technológiát fejlesszünk ki, ami képes megkülönböztetni az emberi interakciókat a robotokétól…”

Nagy István

István Data Scientist-ként azon dolgozik az Enbrite.ly-ban, hogy megtisztítsák az online hirdetési piacot azoktól a robotoktól, akik lekattintják az online hirdetések nagy részét, ezzel kárt okozva a hirdetőknek, vagy akár a publishereknek is. Mindezt úgy, hogy a rengeteg hozzájuk érkező adatból be tudják azonosítani, hogy az adott online tevékenységet egy ember vagy egy robot végzi.
A B-DATA2 konferencián is erről fog beszélni – hogyan működik ez és milyen adatokból tudunk dolgozni.
A robotok ébredése bővebben…

Első adatvezérelt projekt

Sok cél, sok adat, sok elemzési lehetőség, sok információ… Egy már működő vállalkozás esetében egyik pillanatról a másikra adatokat bevonni a döntési folyamatokba nem is olyan könnyű. Ennek az oka pedig az, hogy rengeteg fajta adatvezérelt projekt létezik. Így kiválasztani az elsőt, ami igazán hasznos, nehéz.
Most felsorolok 3 projektet, amelyek az elmúlt évek tapasztalatai alapján jó első lépések lehetnek az adatvezéreltség rögös útján.

1. Konverzió optimalizálás AB-teszttel

Ez a projekt iszonyatosan egyszerű és rögtön látványos eredményt hoz, ami nem más mint a konverziónövekedés. Azt pedig mindenki szereti. :-) (Az AB-tesztelésről már többször is írtam, úgyhogy most a részletekbe nem mennék bele.) A folyamat az, hogy:

I. Megkeresel egy UX-problémát a honlapodon.
II. Keresel rá alternatív megoldásokat.
III. Teszteled, hogy melyik a legjobb megoldás.
IV. A legjobb megoldást kiteszed élesbe.
V. Újrakezded egy új problémával.

Amit sosem szabad kihagyni, az az AB-tesztet megelőző kutatás. Sokszor látom, hogy az emberek elkezdenek csakúgy megérzésből AB-tesztelni. Néha összejön, néha pedig nem… Amit mi szeretünk csinálni: teszt előtt hőtérképes elemzés, Google Analytics elemzés és legalább 3 user-teszt egy adott oldalra. Ez alapján sokkal célzottabb és hatékonyabb AB-teszteket tudunk összerakni.

2. Stratégia adatalapon

A hosszútávú döntésekben segít. Éppen emiatt nem olyan látványos és azonnali az eredménye. Amiért mégis szokták szeretni a döntéshozók, mert konkrét számokat látnak a stratégiáik mögött.

Sokfajta metódus létezik. Én a 4DX módszertant találtam eddig  a legjobbnak. Ennek a lényege, hogy van egy főcélod (pl. bevétel?) és keresel ehhez támogató alcélokat (ún. lag-ek) és az alcélokat támogató tevékenységeket (ún. lead-ek). A struktúra akkor működik, ha minden eleme mérhető is.

3. Triggerek és automation-ök

Ebben a pontban általában e-mail marketing-ről beszélünk. De lehet szó push-notification-ökről, sms-kampányról, in-site pop-up-okról, akármiről.

A lényeg, hogy ha követed a felhasználóid viselkedését, akkor bizonyos viselkedésminta aktiválhat bizonyos üzeneteket. Pl. ha látod, hogy egy felhasználó 100-szor megnézte a landing-edet, de még egyszer sem vásárolt onnan, akkor küldhetsz neki egy levelet, hogy személyes support-ot kínálsz neki, hogy könnyebb legyen a vásárlás.
Ha látod, hogy egy másik felhasználó vásárolt nálad 10 terméket, küldhetsz neki egy e-mail-t, hogy köszönöd a hűségét, itt egy 50%-os kupon, etc…

Ezek az ún. triggerek azonnali és látványos hatást fejtenek ki a lemorzsolódó felhasználók visszatérésére, hiszen személyre szabott üzenetet küld a megfelelő embereknek a megfelelő pillanatban.

Merre tovább?

Ez a 3 projekt (1. kutatás + AB-teszt, 2. Stratégia felépítés, 3. Trigger-ek beállítása) az, ami legjobb első adatvezérelt projektek között van. Látva az eredményességüket pedig könnyebb már továbblépni a saját adatbázisok felépítése és a finomabb (és még hasznosabb) adatos projektek felé.

Többet akarsz tudni a témáról? Gyere el az Adatvezérelt Marketing Tréningünkre!

Tomi

Mobil App mérések – miért, mit és hogyan?

Tudtad, hogy a letöltött mobil app-ok 80%-át az első használat után törlik a felhasználók a telefonjukról? Hogy bent maradj a kellemes 20%-ban, elengedhetetlen, hogy reagálj a user-eid viselkedésére! Ehhez pedig mérned kell. Ugyanúgy, mint desktop-os internetes alkalmazásoknál… habár az elmélet és a gyakorlat is egy kicsit más. Ebben a cikkben leírom azt a néhány best practice-t, amivel már könnyen el tudod kezdeni a mobil app-od mérését!

MIÉRT MÉRJEM A MOBIL APP-OM?

Az egyik legfontosabb kérdés, hogy miért is mérsz? Erről már többször is írtam, de nem győzöm mindig hangsúlyozni, hogy akármit is mérsz: legyen egy jól definiált üzleti célod!
Ezt a célt állapotban két dolog határozza meg (Rajtad kívül). Az egyik, hogy milyen bizniszben vagy, a másik pedig hogy milyen szakaszában a növekedésnek.

Ha pl. egy érett e-commerce bizniszen dolgozol, akkor az egyik legfontosabb célod a Revenue, azaz a bevételed lesz.
Ha egy korai fázisú startup-on, akkor inkább az engagement-re és az activation-re fókuszálj, azaz arra, hogy a felhasználók egyáltalán megértsék a termékedet és elkezdjék használni – no meg persze, hogy elégedettek legyenek vele.
Egy feltörekvő média oldalnak pedig általában a retention-re fekteti a hangsúlyt, tehát a visszatérő látogatók számára és a visszatérések sűrűségére.

Ha megvan a célod, akkor már könnyen választ adhatsz a miért-re. Azért mérsz, hogy ezt a célt minél könnyebben elérd és ha nem sikerül, akkor megértsd, hogy miért nem sikerült. És persze, hogy tudd, hogy hol, mikor, mit és hogyan kell változtatnod.

MIT MÉRJEK A MOBIL APP-OMBAN?

Egy mobil app persze elég speciális biznisz. Van egy-két dolog, amit a legtöbben mérnek és ami gyakorlatilag kikerülhetetlen, ha ezen a területen dolgozol. A 3 leggyakoribb:

1. Onboarding funnel

Mobil App Onboarding Funnel
Mobil App Onboarding Funnel

Ahogy a képen is látszik, az onboarding során lépésről lépésre kiesnek az emberek. pl. 1300-an letöltik az app-ot, 800-an elindítják, 400-an beregisztrálnak, 100-an pedig elkezdik használni tényleg a terméket, stb, stb… A lényeg, hogy lásd, hogy hol esnek ki a legtöbben és, ha ez a szám nagyon nem illik az elképzeléseidbe, akkor tudd, hogy ott valamit változtatnod kell.

A mobil app-oknál a legtöbb onboarding funnel így néz ki.
1. lépés: Letöltések száma (pl. 1000 db)
2. lépés: Launch (pl. 800 db)
3. lépés: Regisztráció (pl. 600 db)
4. lépés: Elkezdik használni a terméket (pl. 400 db)
5. lépés: Végére érnek az első körnek, a tanulási (más néven onboarding) folyamatnak (pl. 200 db)

Az 5. lépés egyébként trükkös, ezért szét szoktuk bontani 3-4 allépésre. Akkor vesszük úgy, hogy egy felhasználó elérte az 5. lépést és “onboarded” lett, ha már tudjuk, hogy minden olyan funkciót használt, ami kell ahhoz, hogy értse a termék előnyeit.
pl. ha egy idegenvezető mobil app-od van, ami a füledre mondja egy városban, hogy merre menj és mit kell tudni a nevezetességekről, akkor valami ilyesmi lehet az onboarding funnel-ed vége:

4. lépés: Kiválaszt a user egy túrát.
5. lépés: Odamegy a túra kezdőpontjára.
6. lépés: Elindítja az audio guide-ot.
7. lépés: Eljut a túra felére.
8. lépés: Végigér a túrán.

Aki végigért a túrán, nagy eséllyel találkozott az app összes főfunkciójával és érti, hogy mi a jó benne. Utána, hogy újra használja-e már, az egy másik kérdés.

2. Retention – visszatérés

Az egyik legütősebb metrika a felhasználó elégedettség vizsgálatára: a visszatérések száma és aránya. Tehát azok közül, akik múlt héten használták az app-odat, hányan használják újra. Itt nem feltétlenül megnyitásról beszélünk, hanem pl. egy core-feature használatáról (mint pl. a spotify-nál a zenelejátszás).

Itt is érdemes Neked definiálnod, hogy mi az ideális visszatérési sűrűség. Pl. ha egy média app-od van (, ahol naponta jelennek meg új cikkek,) vagy egy self-tracker alkalmazásod (, ahova minden reggel beírod, hogy milyen kedved van), akkor érdemes napi retention-t mérned. Egy Uber típusú app-nál a heti retention már logikusabbnak tűnik, egy repülőjárat kereső alkalmazásnál pedig akár a (több-)havi retention is indokoltnak tűnhet, hiszen a legtöbb ember amúgy sem utazgat minden héten vagy hónapban repülővel. (Azért törekedj minél kisebb retention time-ot belőni, mivel ha változtatsz valamit az app-odban és szeretnéd a retention-re gyakorolt hatását látni, mindig annyit kell majd várnod az első adatpontodra, amekkorára a retention definíciód be van állítva.)

Ha ez megvan, akkor nincs más dolgod, minthogy meghatározd a napi, heti vagy havi visszatérő látogatóid számát és arányát. És, hogy próbáld ezt a számot minél magasabbra tolni!

A retention címszó alatt még több dolgot is mérhetsz. Pl. a churn, azaz a lemorzsolódások aránya (pl. hányan uninstall-álták az alkalmazást, vagy hányan nem tértek vissza legalább a retention time-od 10-szereséig.) Vagy idetartozik az active/passive user-ek aránya. Azaz, hogy az összes user-edből hány % aktív.

3. Revenue – bevétel

A bevételt is többféleképpen mérheted. Itt persze attól is függ a dolog, hogy pontosan, hogy monetizálsz (fizetős app? reklámokból? in-app eladásokból? stb…), de a leg fontosabb alapmérések:

  • Első fizetésig eltelt idő
  • Fizetős user-ek aránya (hány ingyenes felhasználóra jut egy fizetős)
  • Havi átlagos bevétel user-enként
  • CLV – Customer Lifetime Value: Ez már egy összetettebb számítás, ami megmutatja, hogy az adott lemorzsolódási arányok és havi átlagos bevételek mellett egy user kb. mennyi pénzt termel az applikáción keresztül Neked onnantól, hogy beregisztrált, egészen addig, hogy letörli az app-ot.
    customer lifetime value mobil app mérés

Ez most csak 3 dolog – onboarding, retention és revenue -, de az alapok lefektetéséhez elég, aztán lehet továbbrészletezni még…

HOGYAN MÉRJEM A MOBIL APP-OM?

A millió dolláros kérdés: milyen eszközzel mérjem a mobil app-omat?
A jó hír hogy rengeteg lehetőség van…
Amit mindenképpen ajánlok az a Google Mobile Analytics. Ingyenes, mindent tud, ami kellhet. A korlátai pedig ugyanazok, mint a Google Analytics-nek. Csak report-olásra jó.
Ha szeretnél eggyel továbblépni, akkor itt is a Mixpanel az egyik legerősebb játékos a piacon. A Mixpanel-lel már viselkedés alapján tudsz szegmentálni, automatizált e-mail marketing-et beállítani, stb…
Ezeken kívül még rengeteg tool létezik, pl. az ingyenes Flurry Analytics vagy a kifejezetten crash-ek mérésére szolgáló Crashlytics – de azt is kevesen tudják, hogy az Optimizely-t is lehet használni mobil app AB-tesztelésre…

Egy szó mint száz

A lehetőségek és az eszközök adottak! Kezdd el mérni az app-odat és meglátod, sokkal tudatosabban, gyorsabban és eredményesebben tudsz majd fejlődni!
Sok sikert!

Ha szeretnél még ilyen cikkeket olvasni, iratkozz fel a hírlevelünkre!

Mester Tomi

Tudatos ügyfélkezelés 1. rész – 90 nap, az ügyfeled első lépései

Lindwurm Tamás
Lindwurm Tamás

Mai vendégszakértőnk Lindwurm Tamás. Tamás 2008 óta foglalkozik adatelemzési, döntéstámogatási  és adatvizualizációs feladatokon a pénzügyi és telekommunikációs szektorban. Részt vett többek között CRM-bevezetés, adatpiac-építés, kampányoptimalizálás, ügyfélérték-számítás és szegmentációs projekteken. Dióhéjban: Félúton az IT és az üzlet között. :-)

Számtalanszor előfordult már velem, hogy a vásárlási szándékom meghiúsult egy nem túl pozitív első benyomás után. Szerintem Te is éltél már át hasonló élményeket. De vajon figyelsz arra, hogy ügyfeleid mindig maximális kiszolgálást kapjanak és szívesen visszatérjenek hozzád?

Mit kell tenned, hogy új ügyfeleid elégedett, aktív felhasználókká váljanak, akik visszatérnek hozzád?

Tapasztalataim azt mutatják, hogy az első három hónap kiemelkedően fontos a hosszú távú, kölcsönösen jövedelmező kapcsolat kialakításához. Ebben az időszakban van lehetőséged bemutatkozni, megmutatni, hogy miért érdemes téged választani és a későbbiek folyamán is visszatérni hozzád.

ügyfélérték diagramm

Ne akarj mindent eladni az első alkalommal és ezzel elriasztani az ügyfelet, mint teszik azt a középkorú nénikék ránk tapadva a cipőboltban. :-)

Tomi korábbi írásában már kitért arra, hogy az első látogatáskor hanyagold a nyitó pop-up-okat, ne töltess ki oldalas regisztrációs űrlapokat. Ezt én is nagyon fontosnak tartom. Gyűjts be annyi adatot, aminek segítségével ügyfeled a későbbiek folyamán is elérhető lesz, de ne többet! Hagyd, hogy az első alkalommal rád szánt időt az weboldalad átböngészésével töltse, ne kérdőívek kitöltésével!

Használd fel az első három hónapot arra, hogy megismerd őt, megtudd az igényeit! Építs fel egy olyan kapcsolatot, amely segítségével a következő alkalommal is Te jutsz eszébe, ha releváns terméket/szolgáltatást keres! Ne engedd, hogy az ügyfél megszerzésébe fektetett rengeteg energia egy rosszul kialakított beillesztési (onboarding) folyamat miatt vesszen kárba! Egy jól megszervezett folyamattal komoly versenyelőnyre tehetsz szert. Nem csak az ügyfeleid értékének növekedését gyorsítod fel, de elégedett ügyfeleid céged hírnökévé is válnak.

Amiket fontosnak tartok, hogy megtegyél az első 3 hónapban annak érdekében, hogy sikeres ügyfélkapcsolatokat alakíts ki:

  1. Készíts oktatóanyagokat (email, videó), amik segítséget nyújtanak az első lépésekben:
    • Egyszerűen/érthetően/edukációs fókusszal fogalmazz
    • Mutasd be termékeid előnyeit, termékhasználatot
    • Helyezz el az anyagokban releváns ajánlatokat/akciókat
    • Segítsd ügyfeled, ha elakad egy lépésnél. (Ha sokan akadnak el ugyanannál a lépésnél, fontold meg folyamatod átalakítását!)
  2. Ezt a célállapotot fordítsd le jól mérhető ügyféljellemzőkké (definiálj KPI-okat):
    • Havi X db vásárlás
    • Havi X ezer Ft feletti költés
    • Heti X óra böngészés az oldaladon
    • X db termék birtoklása/rendszeres használata
  3. Határozd meg az elérni kívánt célállapotot, hova jusson el ügyfeled 3 hónap után!
  4. Küldj “welcome e-mail-t” az ügyféllé válás/első vásárlás után – nagy hatással tud lenni, ha az első levél a cég vezetőjétől érkezik!
  5. Vásárlások után küldj ügyfél elégedettségi (rövid, akár csak egy szám visszaküldése is elegendő egy 0-10-es skálán) kérdőívet! Ha negatív visszajelzés érkezik, vedd fel vele a kapcsolatot (Itt is a vezetőtől érkező megkeresést javaslom.)
  6. Tereld ügyfeleid az optimális csatorna felé (személyes vagy telefonos kapcsolattartás helyett online lehetőségek népszerűsítése)! Mutasd meg nekik az online csatorna lehetőségeit!
  7. Említettem, hogy az első alkalommal ne támadd le ügyfeled a legrészletesebb kérdőívvel, a későbbiek folyamán ezt ütemezetten megteheted:
    • Törekedj arra, hogy csak a legrelevánsabb információkat gyűjtsd be, amit a későbbiek folyamán fel is fogsz használni!
    • Az itt kapott információkat építsd be a későbbiek folyamán a személyre szabott ajánlatokba!
  8. Nagyon fontos az ütemezés. Ügyelj arra, hogy egyenletesen elosztva a releváns időpontokban kommunikálj. Ne zaklasd őket túl gyakran.
  9. Tárold le, hogy kinek/mikor/mit/milyen csatornán küldtél! Segít abban, hogy egyfélét kommunikálj és be tudd tartani a megkeresések közötti szüneteket.
  10. A 90 napos időablak végéhez érve csinálj még egy elégedettség mérést
    • Ha ez pozitív – (akár bizonyos kedvezményért cserébe) kérd meg, hogy ajánljon ismeretségi köréből potenciális ügyfeleket
    • Ha ez negatív – keresd meg és használd fel a kapott választ folyamataid/termékeid javításához

Lássuk ezt egy idődiagramon:

az ügyfél első 90 napja egy ábrán
az ügyfél első 90 napja egy ábrán


Néhány ötlet a visszamérésekhez:

  1. Tesztelj! Alkoss kontroll csoportokat, legyenek olyan ügyfelek:
  2. Mérd le, hogy az alkalmazott folyamat előtt/után:
    • átlagosan meddig tartott ügyfeleidnek, amíg elérték a célnak meghatározott állapotot
    • mennyivel nőtt az egy ügyfélre jutó átlagos termékszám
    • mennyivel nőt az átlagos ügyfél élettartam
  3. Kösd össze ügyfeleid viselkedési adatait az elégedettségi felméréseknél adott válaszaikkal, hasonlítsd össze!
  4. Nézd meg, hány új ügyfelet hoztak a folyamatban részt vevők az ajánlási rendszeren keresztül!
  5. Számold ki, hogy mennyivel több pénzt kerestél a korábbi állapothoz képest a tudatos új-ügyfél kezelési folyamatoddal… :-)

Milyen pozitívumokat várhatsz a folyamattól:

  • Ügyfeled megismerése
  • Ügyfélkapcsolat megalapozása
  • Az ügyfél elkötelezetté tétele céged irányába
  • Későbbi keresztértékesítési lehetőségek előkészítése
  • Személyre szabott ajánlatokkal magasabb válaszadási arány
  • Lojalitás növelése
  • Ügyfél élettartam növelése
  • Ajánláson keresztül új potenciális ügyfelek szerzése
  • Visszajelzések felhasználásával lehetőség ügyféligényekkel összhangban történő folyamat/termékfejlesztésre

Szóval, belevágsz? :-)
Lindwurm Tamás

6 szám, amit minden e-kereskedőnek mérnie kéne

A forintosított bevételével minden e-kereskedő tisztában van. Ez az alfája és az omegája minden analitikának, ez a végső siker mértéke. De van még másik 6 szám, amit minden tudatos online kereskedőnek ismernie kellene. Már csak azért is, mert ezek azok a számok, amelyek közvetlenül befolyásolják a bevételt – így ha tudatosan méred őket, látni fogod, hogy hol tudsz a leggyorsabban javítani az üzletmeneteden.

1. Az átlagos kosárméret (HUF/hó)
számítás: (havi összbevétel)/(havi vásárlások száma)
“Ha meggondolod, hogy egy látogató megszerzésének van egy fix költsége, akkor az hogy ettől a látogatótól minél nagyobb rendelést tudj elkönyvelni, a legegyszerűbb módja a bevételed növelésének.” (Bill D’Alessandro, befektető amerikai e-commerce szektorban)

2. Vásárlószerzés költsége csatornánként (HUF/vásárló/csatorna)
számítás: (reklámra költött pénz adott csatornán)/(vásárlók száma az adott csatornából)
Mindegy, hogy honnan szerzed a látogatóidat – Facebook, Google, Twitter, fórumok, blogok, konferenciák – mindegyiknek lesz valamekkora költségvonzata. Innentől pedig egyszerű matek az egész: legyen nagyobb a profitod az eladásból, mint amennyibe a reklám (és a kézbesítés) kerül.
Ha tudod, hogy melyik a legköltséghatékonyabb csatornád, tudni fogod mire érdemes fókuszálni. Enélkül könnyen lehet, hogy csak az ablakon szórod ki a pénzt.

3. Éves szintű visszatérés (%)
számítás: (azon felhasználók száma, akik tavaly is és idén is vásároltak tőled) / (összes tavalyi vásárló)
Itt nincs jó vagy rossz érték, de Kevin Hillstrom amerikai big data guru több 100 webshop elemzésén keresztül kialakított gyakorlata azt mutatja, hogy ez a szám alapvetően határozza meg az e-kereskedelmi stratégiát.
Ha ez az érték 40% alatt van, akkor a főfókuszod az új látogatók megszerzése legyen! Fektess a reklámjaidba és a továbbajánlások megszerzésébe energiát! (Ilyen cégek pl. túrafelszereléssel foglalkozó cégek, szemüveg boltok, és egyéb ritkán fogyasztott termékek).
Ha ez az érték 60% felett van, akkor építs lojalitást és kiemelt figyelmet szentelj a felhasználói élménynek. (pl. Amazon, Ebay, Tesco online, stb…)
Ha az érték 40% és 60% között van, akkor abban a ritka helyzetben vagy, hogy mindkét területre – új vásárlók és lojális vásárlók – koncentrálnod kell. Ilyen cégeknél (pl. Zappos) kiemelten fontosak a személyre szabott, informatív hírlevelek – illetve a perszonalizált élmény.

4. A konverziós arány (%)
számítás: (vásárló látogatók száma) / (összes látogató száma)
Ezt a kifejezést mindenki ismeri. Azt fejezi ki, hogy a látogatóidnak mekkora százaléka lesz valódi vásárló. Korai szakaszban ez a szám fontosabb, mint maga a bevétel, hiszen a befektetések megtérülését is ebből lehet számítani. Később is folyamatosan érdemes azon dolgozni, hogy ez az arány minél magasabb legyen.

5. Lemorzsolódás aránya (%)
számítás: (NEM vásárló látogatók száma) / (összes látogató száma)
Tulajdonképpen a konverziós arány ellentétéről beszélünk. De a lemorzsolódást lépésenként kell mérni – melyik aloldalon, melyik kosárfolyamatnál, pontosan hány %-a esett ki az embereknek. Ezáltal nagyon gyorsan megtalálhatók a gyenge pontok, optimalizálhatóak a vásárlási folyamatok.

6. Egy vásárlóra jutó profit
(Ft/vásárló)

számítás: (havi összbevétel)/(havi vásárlók száma)
Akár a lojalitás, akár az új vásárlók megszerzése a fókuszod, mindenképpen fontos, hogy maximalizáld az egy vásárlóból kitermelt profitot. A fenti 5 mérés mind-mind segít ebben – csökkentheted a lemorzsolódás arányát, növelheted a kosárméretet vagy optimalizálhatod a látogatószerzési folyamataidat – a végeredmény mindig az lesz, hogy nő az egy vásárlóra jutó profit. Ha emellett szinten tudod tartani a vásárlók számát, nem nehéz kiszámolni, hogy a bevételed is nőni fog!

Összegzés: Ezek az adatok a Te céged vásárlási adataidból is kinyerhetőek. Semmilyen speciális eszközre vagy szoftverre nincs hozzájuk szükség. Érdemes őket folyamatosan monitorozni, hiszen általuk sokkal tisztábban fogsz látni a cégedben és sokkal tudatosabban tudod majd felépíteni és változtatni a stratégiádat.

Ha segítségre van szükséged, szólj! :-)

Mester Tomi

inspiráció: Croll&Yoskovits – Lean Analytics

A limonádés stand – avagy mit is kéne mérni?

“Ahhoz, hogy eldöntsd, mit is kéne mérned, olyan egyszerűen le kell tudnod írni az üzleti modelledet, mint egy limonádé árusító stand. Lépj egyet hátra, felejts el minden részletet és csak az igazán fontos összetevőkkel foglalkozz.” (Croll & Yoskovitz – Lean Analytics)

Croll és Yoskovitz szerint egy induló vállalkozásnak az egyik legjobb szimbóluma egy limonádé árusító stand lehetne. Könnyű megérteni belőle, hogy hogyan is működnek az üzleti modellek.

Mert hát hogy is működik egy sikeres limonádé árusító? Természetesen több pénzt keres a limonádé eladásából, mint amennyi költséggel az egész jár. Mik lehetnek a költségek?
– összetevők ára (citrom, cukor, poharak, víz)
– az egyszeri marketing kiadások (maga a pult, kóstolók, szórólapok)
– órabérek (ami persze gyerekkorban még nem is olyan fontos :-))

A számítás könnyű:
((Eladott italok száma) * (Ital ára)) – ((összetevők * elkészített italok száma) + (marketing kiadások) + (órabérek))

Ha ez az összeg pozitív, akkor nyereséges az üzlet, ha negatív, akkor nem az.

De ez mégsem ilyen egyszerű, hiszen a képletet befolyásolja a citrom árváltozása, az időjárás (vevőszám változás), az átmenő forgalom a környéken. Egyszóval rengeteg dolog, amire nehéz előre gondolni.
És mitől lesz mégis sikeres a limonádé árus?
Egyrészt, ha az előzetes számításokat elvégezte, másrészt, ha a felmerülő körülményekből származó hatásokat folyamatosan monitorozza (azaz méri), nézi, hogy mi milyen hatással volt az üzletmenetre és ezek fényében változtat.
Pl. ha a citromot a sarki árustól vette, aki a növekvő forgalom miatt felemeli a citromárakat, akkor a limonádé szakemberünk értelemszerűen rögtön reagálni fog rá és más beszállítót keres. Ha látja, hogy a környéken nagy lezárások vannak, akkor áthelyezi a székhelyét.

A különbség az online bizniszek és a limonádé stand között csupán annyi, hogy online sokszor ezeket a körülményeket nem tudjuk automatikusan észlelni és szétválasztani egymástól. Csak azt látjuk, hogy kezdenek fogyni a user-eink, de azt nem értjük, hogy miért – hiszen az egész egy láthatlan térben történik, tőlünk távol. Viszont ha mindent követünk, mérünk és adatokkal támasztunk alá, akkor ez a probléma megszűnik. Ha A/B teszteljük a marketing kampányainkat, ha UTM-kóddal látjuk el minden Facebook linkünket, ha szegmentáljuk a felhasználóinkat kor és nem szerint, stb…, egy pillanat alatt észlelni fogjuk, hogy mi az ok és mi az okozat és legfőbbképpen azt, hogy hogyan kell változtatnunk, hogy továbbra is sikeresek maradjunk.

Úgyhogy gondold végig még ma az üzletedet egy lépés távolságból! Mik a főbb összetevők és hogyan lehet ezeket mérni. Majd menj bele a részletekbe is, hogyan tudod követni az apró változásokat, hogyan tudsz mindent szem előtt tartani! A hasznod pedig az azonnali és folyamatosan fejlődő stabil üzletmeneted lesz! :-)

Mester Tomi

Startup adatelemzés interjú IV. – USTREAM

brickflow logo startup interjúA Ustream BI csapatának a vezetőjével, Szakács “Szaki” Balázzsal beszélgettem, arról, hogy pontosan hogyan működik náluk az adatelemzés, az üzleti intelligencia és a big data. A lenti interjúból a nekem legérdekesebb 3 dolog volt, hogy:
1. A Ustream-nél még viszonylag friss, kb 2 éves a BI, de máris óriási hatással vannak a termékre és a cégre.
2. Hogy milyen erős az összefüggés a jól megválasztott social media csatorna és az aktuális tartalom a nézettséggel.
3. Hogy több ezrek közvetítik az esküvőjüket online. :-)
(+1: Van saját Ustream sörük!!!)

Íme a teljes interjú:
Tomi: Te mit csinálsz pontosan a Ustream-nél?

Szakács Balázs, Ustream, BI csapatvezető
Szakács Balázs, Ustream, BI vezető

Szaki: Lassan 2 éve vagyok itt és én vagyok az üzleti intelligencia rész vezetője. Engem azért hoztak ide, hogy segítsem a Ustream-et arra az útra lépni, hogy egy igazán adatvezérelt szervezet legyen. Ehhez gyakorlatilag 0-ról kellett felépíteni a dolgokat: csapatot toborozni, megfelelő embereket  kiválasztani, egyáltalán azt eldönteni, hogy milyen típusú team-re van szükség. A gyakorlatban pedig a vezetői feladatok mellett én tartom a kapcsolatot a cég különböző területi vezetőivel,  kulcsfelhasználóival. Összegyűjtjük az igényeket, hogy milyen irányba lehetne fejleszeni és továbbvinni a terméket, hol tudunk a legnagyobb értéket teremteni. A csapatom pedig az, aki segít ezt megvalósítani, én pedig ebben támogatom őket.

Ezek szerint 2 éve kezdtétek el igazán használni a BI-t a Ustream-nél?
Igen, én 2 éve érkeztem, a csapat maga pedig másfél éves. Tehát mondhatjuk azt, hogy ez egy elég friss dolog a Ustream-nél.

Általánosságban mire használjátok a Ustream-nél az adatelemzést?
Több felhasználási terület van. Az egyik az abszolút vezetői döntés támogatás: hogy áll a cég, jó irányba haladunk-e? KPI-ok, bevételi számok, lemorzsolódási arányok. Ezeket az adatokat heti vagy napi szinten szolgáltatjuk. Van termékfejlesztési támogatás: ha  a termékmenedzserek kitalálnak egy ötletet, mi meg tudjuk mondani, hogy hogyan kéne beárazni, mekkora ügyfélbázisnak lehet érdekes, amit ők kitaláltak…

Ezt AB-tesztekkel nézitek vagy historikusan?
AB-teszteket folyamatosan csinálunk a cégnél, de nem a mi csapatunk. Ezt általában azok csinálják, akik magát a honlapot, a front-end felületet készítik – vagy akár a termékmenedzserek. Pl. az egyik termék ilyen áron van, a másiknak féláron van…

Árakat is szoktatok tesztelni?
Igen, árteszteink is vannak… De nagyon sok User Experience (UX, felhasználói élmény) jellegű tesztünk is van. Pl. ikon legyen vagy felirat. Vagy mekkora legyen a felirat, vagy hova tegyük azt a feliratot, hogy sokkal inkább kézre álljon a felhasználóinknak a termék. Sok ilyet csinálunk, de ezt minden részleg magának, önjáróan készíti. Persze, ha van kérdésük, szívesen segítünk, de alapvetően megvan náluk a kompetencia meg a tapasztalat, hogy összehozzák ezt. Ezek az AB tesztek.
A terméktervezési-döntéseknél pedig általában azt nézzük meg, hogy az ügyfélbázisunk hogy működik. Tehát, ha a termékmenedzserek valamit kitalálnak – valamilyen hipotézist -, mi megnézzük, hogy ez mennyi embernek lehet jó. Megnézzük, hogy ténylegesen az elmúlt években, hónapokban, hogyan használták a termékünket. Milyen tartalmakat fogyasztottak? Miket néztek? Milyen jellegű közvetítéseket csináltak? Ezek historikus adatok és ebből elég jól meg lehet mondani, hogy az ügyfélbázisunkra milyen hatással lesz, ha valami újat bevezetnek.

Hány user-etek van most és ehhez képest hányan dolgoztok a Ustream-nél?
Most már több, mint 30 millió regisztrált felhasználónk és havi 80 millió nézőnk van. Ehhez képest mi 250-en vagyunk a cégnél, Magyarországon 115-en. Itthonról megy minden fejlesztés és üzemeltetés. Mi, az üzleti intelligencia csapatban 6-an vagyunk, mi is Budapesten.

Egy laikus számára mi lehet a legérdekesebb, amit adatokkal elértetek?
Ami nagyon érdekes, az az, hogy milyen típusú tartalmakat közvetítenek nálunk és mit néznek. Például megnéztük, hogy hány esküvő van a Ustream-en. És kiderült, hogy havonta több ezer esküvőt közvetítenek, ami egészen meglepő volt nekünk. De nagyon sok egyház is minket választ arra, hogy mindenféle szertartást, ami náluk van, azt nálunk közvetítsenek és pl. a tartalmunknak egy része emiatt vallási tartalmú egyébként.

Ezt hogyan látjátok az adatokból?
Amikor egy közvetítést kezdesz, akkor meg kell adni, hogy milyen típusú tartalmat közvetítesz. Ebből tudunk információt begyűjteni… Az is nagyon érdekes, hogy a social media milyen hatással van a közönségre. Például volt egy One Direction koncert, amit mobiltelefonnal közvetített végig egy néző a hátsó sorból. Nem sok minden látszott, mert hátul volt, sötét volt és mégis a különböző rajongói Facebook csoportokon elterjedt és pár percen belül már 110.000-en nézték. Egy viszonylag rossz minőségű tartalom, de mégis annyira aktuális volt és annyira jól terjedt el a social media csatornákon, hogy ennyire felfutott a nézettsége.

Milyen eszközöket használtok az adatelemzéshez?
Nálunk is minden megtalálható, ami a klasszikus “kemény vonalas business intelligence” eszköze. Az open-source eszközök vannak túlsúlyban Pentaho ETL, MySQL, stb… Van big data megoldásunk is, ehhez az Amazon szervereit használjuk, ahol fut egy Hadoop Cluster-ünk. Fizetős eszközöket használunk adatvizualizálásra – ez a Tableau.

Van valami, amit még szívesen elmondanál?
Talán nem is az adatokról, hanem arról, hogy igazán büszke vagyok arra, hogy milyen csapatom van. Merthogy sikerül elérni másfél év alatt, hogy fontosak lettünk és a középpontba kerültünk a cégen belül. Reflektorfényben vagyunk, mert nagyon erős igény van az adatokra és az adatelemzésre. Nincs nagy csapatunk, de mégis mindent így 6-an csinálunk. És működik. Nagyon jó az összetétel mind tudásban, mind személyiségben. Én pedig sehol nem lennék, ha nem ilyen csapat lenne mögöttem.

Köszönöm szépen a beszélgetést!

A Startup adatelemzés interjú sorozat többi része:
Prezi, Evernote, Eventbrite, GoodData, Brickflow és Ustream interjúk

Mester Tomi

Startup adatelemzés interjú I. – PREZI

prezi startup logoTóth Zotyával, a Prezi adat-infrastruktúra csapat vezetőjével beszélgettem, arról, hogy hogyan is működik az olyan sikeres startup-oknál, mint a Prezi az “adatozás”, a big data és a különböző elemzések összeállítása. Nagyon sok érdekességet megosztott velem. A kedvenc tényeim:
1. A cégben nagyon erős a belső transzparencia. Az elemzéseket az összes Prezi dolgozó láthatja – beleértve az éves bevételt, az aktív felhasználók számát és minden egyebet.
2. A prezi belső szerverein naponta (vagy még sűrűbben) 640 script gyárt automatikus riportokat/elemzéseket.
3. Körülbelül 1 petabyte (=1.000 terrabyte = 1.000.000 gigabyte) elemezhető interakciós adatból dolgoznak – amivel azt kutatják, hogy a felhasználók hogyan használják a prezit, hova kattintanak és miért.
4. Önkiszolgálás. Minden csapat képes saját magát kiszolgálni adatokkal. A jól felépített infrastruktúrának hála gyorsan és könnyen érik el az adatokat.

toth zotya startup adatelemzés prezi
Tóth Zotya, Prezi

Tomi: Hányan vagytok most a Data Team-ben?
Zotya: Most 9-en vagyunk. Ezen belül hárman vagyunk a Data Services-ben. Amit mi csinálunk, az a gerince az egész adatinfrastruktúrának, egyrészt, mi gondoskodunk róla, hogy az adatok eljussanak az adattárházba, másrészt, hogy menjen minden elemző eszköz, amit a különböző csapatok használnak. Ezekkel, már eljutottunk odáig, hogy automatikusan működnek és ha valami gond van velük, jeleznek nekünk maguktól. A főprojektünk az ETL, ami a gerince az adattovábbításnak. Erre van egy komoly belső fejlesztésű rendszerünk.
A preziben nagyon fontos, hogy az egész adatozás self-service, tehát ha te egy termékcsapatban dolgozol, akkor te meg tudod írni a saját riportjaidat, te tudod, hogy honnan keresd az adatot, hogy hogyan strukturáld és mi pedig egy platformot adunk, hogy mindezt megcsináld. Így sikerült azt elérni, hogy még mindig 3 fős a csapat, és mégis ki tud szolgálni egy ekkora, több mint 200 fős szervezetet.

– Mire használjátok az adatokat a Preziben?
– Egyrészről vannak a core-adatok, amik a startégiai döntéseket befolyásolják. Ezeket nagyon sokat nézi a vezetői csapat, hogy merre vigyék tovább az üzletet. Pl. felhasználók száma, aktív felhasználók száma, bevétel,  vagy éppen, hogy hányan újítják meg az előfizetésüket, azok akik elkezdtek egy próbaidőszakot és hányan fizetnek. Tehát sok benne a növekedés menti, az aktív használat és a bevétel menti adat.
Másrészről a termékcsapatoknak van saját KPI-uk (“teljesítmény-mutató”), tudják mit akarnak elérni egy adott szemeszterben és azt mérik. Ezt lebontják különböző szintekre és néznek nagyon finom dolgokat is. Például sok olyat csinálnak, hogy egy kis részletet megváltoztatnak – A/B tesztelés – a weben. Egyszerűen csak máshova tesznek egy gombot, ami kimegy a felhasználók 5%-ának, a maradék 95% pedig látja a régi verziót. Azt figyelik, hogy az az 5% szignifikánsan jobban használja-e ezt az új funkciót – magyarul, hogy érdemes-e azt a gombot arrébb rakni. Ha igen, akkor megváltoztatjuk a terméket. Párhuzamosan sok ilyen kísérlet zajlik – persze nagyobbak is, de ez egy jó példa.
Ha fejlesztenek egy új dolgot, akkor tudják, hogy miket akarnak nézni: hányan használják, hányan használják mégegyszer, mennyi a hiba, a felhasználóknak hogyan változik a viselkedése, ami alatt azt értem, hogy mennyire könnyen csinálnak az emberek egy prezit. Erre is vannak belső mérőszámok és a fejlesztők azt nézik, hogy ha változik egy funkció, akkor hogyan változnak ezek a mérőszámok.

– Hogyan frissülnek az adatok? És hogyan jelenítitek meg őket?
– Körülbelül 640 script van, ami minden este vagy akár óránként lefut és ezek elküldik az eredményeket különböző vizualizációs platformokra. Például van egy chart.io nevű eszköz, de emellett használjuk a gooddata-t is. Ezenkívül van a Plotserver, ami egy sajátfejlesztésű open-source eszköz…

– Ezt a Prezi fejlesztette és open-source-szá tette?
– Igen. Bárki számára elérhető… (link: https://github.com/prezi/plotserver) Ezenkívül még van a Prezi Analytics, amit a Metrics csapat kezel. Ez az a felület, amin soha nem lehet hiba, mivel ez sok fontos döntést befolyásol és emiatt mindig pontosan és időben ott kell lennie a számoknak. Ha prezi alkalmazottként üzleti adatokkal akarsz dolgozni, kíváncsi vagy, hogy mi történik éppen a céggel, felmész erre a webes felületre és pár perc alatt összekattintgathatod az elemzésedet.

– És ezt a cégből mindenki eléri?
– Igen, ez nagyon fontos. A Prezinek az a filozófiája, hogy ahhoz, hogy datadriven-ek legyünk, ahhoz mindenkinek mindenhez hozzáférést kell adni. Tehát nincs olyan adat, ami titkos bárki előtt a preziben. Onnantól, hogy felvettek, visszamenőleg látod, hogy mikor mekkora volt a bevételünk, mennyi felhasználónk volt és azok hogyan viselkedtek. De minden mást is, amire csak kíváncsi vagy. Egészen egyszerűen azért, hogy a legjobb döntést tud meghozni.

– Köszönöm szépen a beszélgetést!

Tetszett a cikk? Nézdd meg a többi részt is:
1. Startup adatelemzés interjú II. – Evernote, Eventbrite, GoodData
2. Startup adatelemzés interjú III. – Brickflow
3. Startup adatelemzés eszköztár – AB-teszt, szegmentálás, kohortok

És ne felejts el feliratkozni a hírlevélre! :-)

Mester Tomi

Stratégiai hiba a BigData korában…

Geiger Tamás, a DuracellTomi webanalitika blog szerzőjének egyik előadásán láttam ezt a videót és nagyon megfogott, úgyhogy megosztom veletek is. A feladat egyszerű: Számold meg hányat passzol a fehér csapat.

Az üzenet adatelemzés szempontjából is ugyanaz: Gyakran figyelünk felesleges metrikákra, nézegetjük a felhasználók számát, hányszor kattintottak ide, hányszor oda és nem vesszük észre a “táncoló medvét” – azaz az Adatot, ami az igazi növekedést hozhatja be az üzletünkbe. A kritikus és stratégiai gondolkodás elengedhetetlen, akármivel foglalkozol. És amikor összeteszed az első méréseidet, akkor is fel kell tenned magadnak a kérdést: pontosan miért ezt mérem? Milyen tanulságokat várhatok abból, ha ennek a kutatásnak megkapom az eredményeit? Mi a célja ennek az elemzésnek/tesztnek? Hogyan segít ez hozzá engem ahhoz, hogy elégedettek legyenek az ügyfeleim/felhasználóim? És hogyan lesz belőle magasabb bevételem?

Az adatelemzés a döntés-előkészítés egyik legfontosabb eszköze, de csak akkor működik, ha:

1. Van kidolgozott mérési-stratégiád.
2. Ez a mérési stratégia beleillik az üzleti tervedbe.
3. Kritikusan gondolkodsz, elrugaszkodsz a sablonoktól és keresed a “passzolások” között a “táncoló medvét”.
4. Ha a kritikus gondolkodás mellett mégis végig meg tudod tartani a fókuszt és következetesen és cél-orientáltan teszel fel kérdéseket.
5. Minden kérdésedre adat-vezérelt, valós választ adsz (vagy szerzel az elemző, piackutató csapatodtól).

Ha ezt nem teszed meg:
1. Időt fogsz veszíteni, hiszen felesleges adatokkal foglalkozol – akár napiszinten is.
2. Pénzt fogsz veszíteni, hiszen nem a lényeges információkra figyelsz, ezáltal félrevezeted sajátmagad és nem veszel észre kézenfekvő, nagy profittal kecsegtető helyzeteket.
3. Elbizonytalanodsz, hiszen te csak azt látod, hogy az emberek passzolgatnak és nem érted, hogy neked ebből mi hasznod fog származni…

———————

KONKRÉT PÉLDA:
Egy szállás- és utazásközvetítéssel foglalkozó cég, már régóta telepítette a Google Analytics-et a weboldalára (hurrá!!! +1 pont :-)). Három dolgot monitoriztak: a látogatók számát, a weblapon töltött időt és a visszafordulási arányt az egyes oldalakról. Tapasztaltak bizonyos szezonalitást, de ezen kívül mást nem is figyeltek meg, beletörődtek, hogy ezzel sokkal több mindent nem lehet kezdeni. (Te is látod? Ők a passzolások számát figyelték… Nade most jön a táncoló medve:)
Amikor találkoztam velük, azt javasoltam, hogy végezzenek el néhány szegmentációt és nézzék meg, hogy pontosan milyen demográfiai csoportok kattintanak a kapcsolat vagy a vásárlás gombra (azaz kiket konvertálnak nagy eséllyel valódi fizető vendégekké). Pillanatok alatt kiderült, hogy a konverziók (azaz a sikeres fizetéseket vagy kapcsolatfelvételek) jelentős részét a 35-44 év közötti férfiak adják. Sőt egy kicsit még jobban beletúrtunk az adatokba és azt is megtaláltuk, hogy ez a célcsoport kifejezetten a “tengerparti nyaralás” címszóra keresett mielőtt az oldalra talált.
Ebből rögtön egy konkrét, 3 lépéses akció tervet tudtunk csinálni:
1. A marketing tevékenységeket erősebben fókuszálni a 35-44 év közötti férfiakra.
2. A tengerparti nyaralásokat kiemelni a honlapon.
3. További piackutatásokat és felméréseket végezni, hogy a honlapra látogató 35-44 éves férfiak milyen nyaralásokat preferálnak és mit szeretnek benne. Ez is egy nagyon egyszerűen működő hírleveles szavazás vagy honlapba beépíthető szavazás formájában nagyjából ingyenesen elvégezhető. (Feltehetően családdal érkeznek és inkább a tengerparti pihenés, napozás, mint a városnézés köti le őket.)

Látod, ez nem is olyan nagy varázslat… Egyszerűen csak meg kell érteni, hogy mit akarnak a vevőid és meg kell adni nekik.

———————

Ahogy Geiger Tamás mondta az előadásán:
“Mindig üzleti célokat mérjünk, ne csak a kattintásokat!”

Tehát:
Mostmár látod a táncoló medvét?

Tomi