Fun-faktor kategória bejegyzései

Érdekességek és vicces tények az adatelemzés és adat világából.

A legfontosabb cikkeink

Ilyen-olyan formában biztosan hallottál róla, de a lényeg: az Adatlabor 2 év aktív blogolás után egy pár évre szünetelni fog! Úgy dönöttem, hogy kilistázom ide az általam legfontosabbnak tartott adatlaboros cikkeket (csak kattints a címre, linkelve van), hogy könnyebben végigmehess rajtuk! Ha új adatos cikkeket szeretnél olvasni tőlem, akkor azt idén ősztől a www.data36.com oldalon teheted meg (angolul)!

ADATSTRATÉGIA / KUTATÁSI STRATÉGIA:

1. A kutatási keretrendszer, amit az Adatlabornál használunk

2. Célok kitűzése, mérésirendszer riportáláshoz

3. Tudatos ügyfélkezelés – az első 90 nap (Lindwurm Tamás írása)

ADATELEMZÉSI TECHNIKÁK, MÓDSZERTANOK:

4. Funnel elemzés

5. Visszatérés elemzés (kohorsz analízis)

6. Linkkövetés – UTM-tag-es mérés (Papp Gábor írása)

7. Fake-door-tesztelés (aka. “gettó tesztelés”)

8. AB-tesztelés – 1. rész (Miért kell AB-tesztelni?)

9. AB-tesztelés – 2. rész (Az AB-tesztelés 4 szabálya)

10. AB-tesztelés – 3. rész (Hogyan mérd vissza?)

ADATOK PREZENTÁLÁSA:

11. Az adatprezentálás 5 szabálya

12. Hogyan vidd át a szervezeten az adatelemzés eredményét?

BIG DATA:

13. Mi az a Big Data?

14. Hogyan próbáld ki a Big Data eszközöket?

ONLINE TARTALMAK, HONNAN TANULJ?

15. A 3 nagy adatelemző nyelv

16. Command Line (minden adatelemző nyelv előtt ezt érdemes megtanulni)

17. Jó könyvek

ADATOS INTERJÚK

18. Prezi (Tóth Zotya)

19. Skyscanner (Kardos Laci)

+1 AZ INGYENES KÉZIKÖNYVÜNK

20. Adatvezérelt Üzlet Kézikönyv

Honnan tanuljunk az adatelemzésről? – 2. rész

Ebben a bejegyzésben megosztok néhány könyvet és online kurzust, amelyeket az utóbbi időben elolvastam/megnéztem és színvonalasnak, hasznosnak találtam. Sok a (big) data-s tananyag a neten, hát még könyvek formájában – sok köztük a selejt is. De szerencsére van köztük jó néhány nagyon jó anyag is.

(Az első részben már mutattam 3 könyvet: http://adatlabor.hu/big-data-konyv-1-resz/)

Íme újabb 4 tananyag, amit érdemes magadévá tenni, ha érdekel a téma!

Honnan tanuljunk az adatelemzésről? – 2. rész bővebben…

Októberi Big Data Tréning és Adatvezérelt Marketing Képzés

Októberben jönnek az új alkalmak!
Mindkét képzés – szokás szerint – max. 12 fővel indul és októberben csak 1-1 alaklom lesz, úgyhogy vigyázz, nehogy lemaradj! : )

Október 9. – Big Data Tréning

Tóth Zotya, Mester Tomi, big data tréning


Október 16. – Adatvezérelt Marketing Tréning

adatvezérelt marketing tréning
Várunk szeretettel!

Tomi

Big Data könyv 1. rész – Mit érdemes olvasni?

A nyáron volt egy kis időm olvasgatni, így hát beszereztem több Big Data könyvet is!

Big Data Könyv 1 - Schönberger, Cukier1. Viktor Mayer-Schönberger & Kenneth Cukier: Big Data

értékelés: 2/10
Őszintén: nagyon megbántam, hogy rászántam az időmet erre az írásra. 200 oldalon keresztül sztorizgat, hasonlatokat hoz – néha nem is Big Data-ról – és a tényleges tartalmát kb 5 oldalban össze lehetne foglalni. A stílusa élvezhetetlen, nagyon szájbarágós, folyamatosan ismételgeti önmagát – ráadásul olyan dolgokban (korreláció vs. kauzalitás), amiben nem is feltétlenül van igaza. A jó történeteket (Google Flue Trends, Netflix, Amazon, etc.) egyébként már mind-mind olvashattuk online a kiemelt hírek között is az elmúlt 10 évben.
Azoknak ajánlom, akik szeretnének egy új – trendi – társalgási témát bedobni az esti borozgatásokhoz a baráti társaságban… De gyakorlatiasságra vagy arra, hogy megtudd, mi az a Big Data, ne számíts! (Ez csak azért szomorú, mert – megtévesztő módon – ez a könyv címe.)

Big Data könyv 2 - Lean Analytics2. Croll & Yoskovitz: Lean Analytics

értékelés: 9/10
Ellentétben az előző könyvvel, ezt 100%-osan ajánlom mindenkinek, aki adatvezérelten akar akármilyen bizniszt felépíteni. Nem kifejezetten Big Data könyv, sokkal inkább adatstratégiáról szól, de nagyszerű gondolatindító. Ha big data-val fogsz dolgozni üzleti fókusszal, akkor egyértelműen alapmű. Ha pedig ugyanezt teszed, de technológiai fókusszal, akkor ez a minimum, amit látnod kell az üzleti oldalról.
A könyv legnagyobb előnye, hogy nagyon-nagyon gyakorlatias. 31 fejezeten keresztül leírja az összes módszertant, illetve tesztelési, elemzési és egyéb praktikákat, amelyeket a menő “data-driven” cégek már kipróbáltak és sikerrel alkalmaznak. Minden fejezet végén megkapod a saját kis “házi feladatodat”, így rövid távon gyakorlatba ültetheted a tudást.

Big Data Könyv 3 - I heart logs3. Jay Kreps: I heart Logs

értékelés: 8/10
Ha az előző írás a startégiai, akkor ez a technológiai alapmű. Jay Kreps a LinkedIn adatinfrastruktúráját építette fel és közben olyan Big Data technológiát támogató open-source projekteket hozott létre, mint a Kafka, a Samza vagy az Azkaban. Ebből sejtheted, hogy nagyjából a füzet minden szava arany. Sajnos elég rövid (50 oldal), de egyúttal tömör és lényegretörő is. Mire a végére jutsz, biztosan érteni fogod, hogy mi az a log, mi köze van ennek a Big Data-hoz és hogy hogyan kell összedrótozni egy normális adatinfrastruktúrát. Betekintést kaphatsz abba, amit a LinkedIn anno a saját bőrén tanult meg – ami nem csak érdekes, de iszonyatosan hasznos is.

A könyveket itt veheted meg:
I heart Logs: http://shop.oreilly.com/product/0636920034339.do
Lean Analytics: http://leananalyticsbook.com

Ha pedig tréningen vagy képzésen ismerkednél meg az alapokkal:

Big Data Képzés: KLIKK!
Adatvezérelt Marketing Képzés: KLIKK!

Tomi

Egy Játék mérése: gamification vs. retention

Múlt héten tettem ki az egyszamjatek.eu című kísérletünket a Facebook oldalunkra.

A játék nagyon egyszerű volt: mondj egy pozitív egész számot és ha ez a legkisebb olyan szám, amit más ember nem mondott Rajtad kívül, akkor nyertél. (Egyébként magát a játékot Mérő László találta ki.)
Összesen 7 forduló volt. Minden fordulóban 24 órán keresztül lehetett játszani. Így összesen 7 nyertest hirdethettünk.

A cél kettős volt:
1. Vizsgáljuk, hogy mi a nyertes stratégia. (Ezt ígéretemhez híven csak azoknak publikáljuk, akik játszottak. Sorry…)
2. Modellezzünk egy gamification alapú startup-ot és vizsgáljuk, hogy a játékélmény milyen hatással van a visszatérésre, illetve, hogy ezt hogyan lehet mérni.

Ezt a cikket azért írom, hogy ha esetleg online játék fejlesztésében vagy, láss néhány ötletet (konkrét példán keresztül is), hogy miket, miért érdemes mérni és elemezni.

Összehasonlítani nem akarom akármilyen más app vagy SaaS szoftver eredményeivel ezt a játékot, hiszen ez csak egy kísérlet, meg amúgy is tök más, mint akármi más, ami értelmes. :-) De azért nem árt ha tudod, hogy egyetlen mérőszám volt, amit boost-olni akartam az egész folyamat során: ez pedig a daily retention – azaz minél többször, minél sűrűbben visszahozni a játékosokat.

Ehhez egyetlen “marketing stratégiát” használtam – mindenki, aki adott napon játszott, kapott egy direkt email-t az eredményekről és egy linket a következő napi játékhoz. Ez a tool működött is – a leveleknek átlagosan 80%-os megnyitási aránya volt, amit kifejezetten erősnek mondanék.

mailchimp megnyitas és CTR - játék
mailchimp megnyitas és CTR

Nézzük mi a helyzet az aktív játékosok számával! Az első nap csináltam a játéknak egy nyitópromo-t (néhány csoportba és FB-oldara kitettem a játékot.) Így 296 emberrel indult a verseny az első nap. Ehhez csatlakozott az utolsó napig innen-onnan még 38 ember (valószínűleg meghívásos alapon, hiszen ezután már nem hirdettem). Tehát összesen 334-en játszottak.

A lenti ábra azt mutatja, hogy mekkora volt a napi visszatérés, azaz az előző nap játékosai közül hány % játszott az adott napon.

daily retention - egyszamjatek.eu - játék
daily retention – egyszamjatek.eu

Ha megfigyeled, két mélypont van. A 2. nap, amikor 30% körüli a retention és az 5. nap, ahol 50% körül van. A többi napon 60% felett megyünk, sőt az utolsó napokon felszökik 100% felé, ami azt jelenti, hogy olyanok is visszajöttek, akik régebben játszottak!
Ki találod mi történt a 2. és 5. napon? Elárulom, ezeken a napokon véletlen délután 4-kor küldtem ki a hírlevelet, amit reggel 9-kor kellett volna. Tanulság ebből a chart-ból: reggel kell kiküldeni a leveleket…

Nézzünk egy klasszikus kohorsz elemzést! Minden sorban az adott nap regisztrált user-eket látod és minden oszlopban azt, hogy hány maradt meg belőlük X nappal később.

kohorsz elemzés játék
kohorsz elemzés

Mi látszik itt? Az, ami már a retention riportból is elkezdett kiderülni. Az első napon regisztráltak, ha ki is hagytak egy-két napot, vissza-visszajönnek 2-3 nap után. Lehet, hogy az ideális játékciklus nem 1 nap lenne, hanem 2?

Kedvenc riportom: aktív user-ek vs. retaining user-ek.

aktiv user-ek vs. retaining user-ek
aktiv user-ek vs. retaining user-ek

Ahogy azt írtam, az első nap után már semmit sem tettem bele a marketing-be. Ez az ábra mutatja a legjobban: ha lecsökken a user bázis, akkor ott szűrve szépen csak a “legjobb” felhasználók maradnak bent. Nekik magas lesz a visszatérésük és valószínűleg ez a néhány (35-40) user volt az is, akik behozták az utolsó pár napon a +10 új user-t – mindenféle költségek nélkül.

2 érdekesség a Gamification hatásáról:
1. Volt egy feltűnő trend a nyertes játékosok körében. Ez a 7 játékos, miután nyertek, már sokkal kisebb eséllyel jött vissza játszani. Lehet, hogy őket valahogy máshogy kellett volna visszacsábítani egy második körre?

játszott - nyert - nem játszott
játszott – nyert – nem játszott

2. A Power User-eknek (azaz, azok a játékosoknak, akik mindennap játszottak), több mint 50%-a mindennap ugyanazt a számot játszotta meg. (Az egyik nyertes egyébként pont közülük került ki.)

———————————————————————————

Akárhogy is, számomra ez egy izgalmas kísérlet volt – sok olyan dolog kiderült belőle, amiket már máshol is mértünk, de a titoktartás miatt nem publikálhattam! :-)

Remélem hasznosnak találtad és ha szeretnél feliratkozni az Adatlabor hírlevélre, ne habozz!

Tomi

Miért szeretem az adatelemzést?

Mostanában – így félévzárás után – sokat gondolkoztam azon, hogy vajon miért is szeretem az adatelemzést?

3 dolgot találtam.

1. Tényeket közlünk.

Több weblap-dizájner ismerősöm is van. Legtöbbjük iszonyatosan tehetséges, szuper weblapokat dizájnolnak, működő, korszerű kódokat tesznek mögéjük – de valahogy mindig van legalább egy ember az ügyfél oldalán, akinek valami apróság nem tetszik. “Szerintem ez nagyon zsúfolt”. Ez “nem a mi stílusunk”. “Valahogy olyan kicsik a képek.”

Az adatelemzésben azt szeretem, hogy bár mi is ugyanazokkal a felületekkel foglalkozunk, mint a webdizájnerek – amit mi mondunk, az objektív és emiatt elég nehezen támadható. :-) Egész egyszerűen számokkal tudjuk megmondani, hogy mi az, ami működik, mi az ami kevésbé… és százalékra (vagy forintra) pontosan azt is ki tudjuk mutani, hogy mennyivel jobb ez a valami, mint a másik valami.

Még nem volt olyan ügyfelünk, akinek ha megmutattuk, hogy ha ez a gomb zöld és nem szürke, akkor az +30% bevételt jelent (persze ez csak egy sarkított példa), akkor arra azt mondta, hogy “Hmm… de ez a zöld nem a mi stílusunk.” Ez persze nem csak azért jó érzés, mert nem kell felesleges dolgokon veszekedni, hanem azért is, mert mindenki dolgát megkönnyíti az, ha tiszta tényszerű adatok alapján tud véleményt formálni.

2. Emberekkel foglalkozunk.

Annak ellenére, hogy a fenti bekezdés alapján az adatelemzés egy elég objektív szakmának tűnik, a valóságban szubjektumokkal fogalalkozunk. Emberi viselkedéssel. Emberi döntésekkel. Emberi dilemákkal.

Miért ide kattint valaki és nem oda? Miért veszi a drágább csomagot? Miért kattan rá egy termékre? Miért utál valamit, amit nem is ismer? Mennyire tudatos? Érdekli egyáltalán, amit modani akarunk neki? Megtalálja, amit keres? Miért viselkedik úgy, ahogy viselkedik?

Ezek a kérdések borzasztóan izgalmasak, mert az embernek a tudatos és tudatalatti gondolatait kutatják… Nem lehet mindig mindegyikre választ kapni, de ha csak egy nap egy rejtélyt sikerül feltárni, akkor már rögtön úgy érzi az (adatelemző) ember, hogy egy kicsit jobban érti, hogy embertársai, mit, miért, hogyan, mikor és meddig csinálnak… És ez jó érzés!

3. Minden nap tanulunk.

Hogy csak egy példát ragadjak ki: az elmúlt egy évben viszonylag sok webshop-pal dolgoztunk. Végigelemeztük és optimalizáltuk a felületeiket: landing oldalaikat, üzeneteiket, termék- és listaoldalaikat, kosárfolyamataikat. Tanultunk nap mint nap, az adatokra és a felhasználók reakcióira, viselkedésére támaszkodva.

Nem állítom, hogy mindent tudok az e-commerce bizniszekről, de az biztos, hogy – ha belenézek az adataikba – bármelyik webshop-nak tudnék legalább egy olyan dolgot mondani, amit a többiek jobban csinálnak, elleshetnek, átvehetnek tőle.

Ezeket a dolgokat pedig nem lehet tankönyvől vagy egyetemeken megtanulni. Ezeket a dolgokat folyamatosan kutatni és mérni kell. Idézőjelesen “a vásárlóktól kell megtanulni”. Azért szeretem az adatelemzést, mert erre a tanulásra is lehetőséget ad.

Úgyhogy egyelőre maradunk a szakmában.
Ha szeretnél szakmai cikkeket olvasni a témában, iratkozz fel a hírlevélre és értesítünk az új bejegyzésekről!

Tomi

Adatsztori 1. rész: Minden biznisz mérhető

Minden üzlet mérhető. És legalább egy-két számmal minden üzletet mérni is kell. Ha ezt nem teszed meg, úgymond vakon fogsz repülni, fogalmad sem lesz arról, hogy mi miért történik – ha szerencséd van fent maradsz, ha nincs hipp-hopp eltűnsz. És hát ki akar hipp-hopp eltűnni?
A másik oldalról: ha igenis méred a teljesítményedet, akkor tudni fogod, hogy minek mi az oka, min, miért és mikor kell változtatni – hovatovább: akár meg tudod jósolni a jövőt is! És ez nem kuruzslás – ez tudomány, aminek a neve: adatelemzés.

Hogy tényleg minden üzlet mérhető, arra itt egy sztori/esettanulmány egyenesen San Diego-ból:

A Solare Ristorante egy olasz étterem San Diego-ban, amit Randy Smerik vezet. Randy technológiai területről érkezett, a Teradata-nál is dolgozott és egyébként 5 technológiai céggel hozott már össze sikeres exit-et. Úgyhogy érthető, ha az adatvezérelt gondolkodás közel áll hozzá. :-)

Solare Ristorante - San Diego
Solare Ristorante – San Diego

Egyik este az étteremben Tommy, Randy fia egyszer csak elkiáltotta magát: 24!
És hogy mit is jelent az, hogy “24”? Tommy elmagyarázta:

“Minden este a személyzet mond nekem egy százalékos arányt a személyzeti költségek és a profit hányadosáról. Ez hasznos, hiszen egy értékkel kontrollálhatok két nagyon fontos dolgot: az egy vacsorára jutó bevételt és kiadást.”

Randy elmagyarázta, hogy ha a személyzet költségei elérik a 30%-át az egész este bevételének, az rossz, mivel vagy azt jelenti, hogy túl sokat költ a személyzetre, vagy azt, hogy túl kevés bevételt termel az étkeztetéssel. Ez egy általános mérőszám minden étteremnél. Egy Michelin-csillagos étteremnél magasabbak a fizetések, de cserébe magasabbak a bevételek is (drága borok, drága ételek, etc.). Ugyanígy egy low-budget étterem nem termel annyi profitot, de emiatt a fizetések is lentebb vannak.

Ez az arány azért működik, mert:

  1. Egyszerű: hiszen egy darab számról beszélünk.
  2. Azonnali: minden este kiszámítható.
  3. Cselekvésre késztet: ha valami nem stimmel, próbálkozhatsz, a személyzeti költségek változtatásával, vagy upsell taktikákkal, áremeléssel/csökentéssel, stb, stb…
  4. Összahasonlítható: minden étterem mérheti és így tudsz viszonyítani.
  5. Alapvető: hiszen a legalapvetőbb mérőszámokból áll össze.

A megfigyelések szerint a 24% kb. a jó arány. 20% alatt sem tökéletes az élet: itt már elképzelhető, hogy minőségen aluli a kiszolgálás, ami hosszútávon nem vezet jóhoz.

Randy elárulta azt is, hogy nem ez az egyetlen mérőszámuk. Pl. megfigyelték, hogy az este 5-ig beérkező foglalások számának kb. 5-szörösére számíthatnak tényleges vendégekből. Így könnyedén meg tudja jósolni, hogy ha 50 foglalás érkezett be, akkor a staff-ot 250 vendégre készítse fel.

Nyilvánvalóan ezek olyan mérések, amelyeket nem mindenhol lehet univerzálisan felhasználni, de az üzenet így is ugyanaz:
Mindenki megcsinálhatja a saját méréseit és tudja építeni tudatosan, adatvezérelten az üzletét! Akár off-line, akár online dolgokról beszélgetünk!

És Te? Már elkezdted? :)

Tomi
A cikk forrása: Croll & Yoskovitz Lean Analytics (Use Data to Build a Better Startup Faster) c. könyve

Interjú – Termékfejlesztés a Skyscanner-nél

Skyscanner logoTavaly októberben robbant a hír, miszerint a Skyscanner felvásárolta a Distinction-t. Azóta az átállás végbement és az egykori Distinction most már 100%-ban a Skyscanner mobilapplikációinak a fejlesztéséért felel. Ennek a zászlóshajója a Flights alkalmazás.  Az egyik cél, hogy a “Travel is mobile” koncepcióhoz híven az egész utazási élményt lefedjék és egy egységes megoldást kínáljanak rá. Kardos Lacival, a Skyscanner Apps Tribe-jának egyik product managerével beszélgettem a célokról, a kihívásokról, stratégiákról és arról, hogy milyen módszerekkel és hogyan fejlesztenek.

Kardos Laci - Skyscanner
Kardos Laci —— Product Manager @Skyscanner

Tomi: Hogy néz ki a cég felépítése jelenleg?
Kardos Laci: Per pillanat a Skyscanner szervezeti modellje a Spotify-jéhoz hasonló. Vannak tribe-ok, azon belül squadok, a squadokat átívelően vannak chapter-ek és guild-ek. Mi, a budapesti csapat, és számos kolléga a cégből, akik korábban szintén mobilapplikációkkal foglalkoztak alkotjuk az Apps Tribe-ot. Az Apps Tribe termékvezetője Orosz Bálint, Kapui Ákos pedig a technológiai vezetője. Magának az Apps Tribe-naka zászlóshajója a Flights, ez az elsődleges termék. A cég hosszútávú stratégiájának egyik eleme, hogy a teljes Travel világot felölelje, tehát ne szeparáltan foglalkozzon a “Hotels”, a “Flights” vagy a “Car Hire” alkalmazásokkal, hanem hogy egy globális utazási megoldást kínálhassunk. Gondolj bele, mennyi macerával jár az utazás: nem csak a foglalás, hanem a repülőtéri dolgok, majd maga a repülés, utána az ottlét… mi ezt az egészet ilyen egyszerűvé szeretnénk tenni (csettint).

Most hogy látod, hol lesztek 1 év múlva? 3 év múlva? 5 év múlva?
A cél az, hogy pár éven belül egy szignifikánsan, mérőszámokkal is alátámaszthatóan erős travel brand legyünk. A cég gyorsan növekszik, mi pedig iszonyúan élvezzük ezt. A Distinction-korszakból hoztuk magunkkal az erős delivery hangulatot. Szeretünk “szállítani”, tolni és vinni előre, és így jó dolgok tudnak születni. Mindemellett nagyon fontos, hogy a jó terméket szállítsuk a megfelelő módon. Itt jön a képbe az, hogy product discovery-ben is erősek vagyunk.

Hogyan méritek a sikerességét egy terméknek?
Ez egy olyan kérdés, amire válaszként egyértelmű, bevált módszert még nem tudok adni, tekintettel arra, hogy még nem adtunk ki alkalmazást a felvásárlás óra. Egyébként eddig a legfontosabb metrikáink közé a “conversion” jellegűek tartoztak.. A Flights-nál például az, hogy az emberek hány százaléka megy át tőlünk végül a külső szolgáltatók oldalára (pl. a légitársaságok foglalási oldalára) és az, hogy akik átmennek, ténylegesen vesznek-e jegyet. Alapvetően a legtöbb fejlesztett kiadás vagy akár az A/B-tesztek ezeket az arányokat próbálják javítani. Életképesség szempontjából persze esszenciális, hogy magas legyen a konverziód, de ami egyre fontosabb, az az, hogy hogyan tudjuk a “frequency of use”-t, azaz a folyamatos visszatérést növelni. Ugyanis az utazás az nem csak arról szól, hogy az ember egyszerre lefoglal mindent, és onnantól kezdve nem is foglalkozik vele, nem is gondol arra, hogy hova fog utazni. Inkább úgy működik, hogy először csak eljátszik a gondolattal, megnézi a blogokat. Azután lefoglalja a repjegyet, majd a szállodát. Utána megnéz valamilyen térképes szolgáltatást. Megtervezi a helyi közlekedést, hogy hogyan fog eljutni a reptértől a hotelig. Aztán azon gondolkozik, miket érdemes megnézni az adott városban. Ezek a mélységek nálunk még nincsenek benne a termékben. Éppen emiatt a jövőben ezekre jobban figyelünk majd. Így rákényszerítjük magunkat arra, hogy olyan termékekkel jöjjünk elő, amelyeket az emberek gyakran fognak használni.

A cél tehát, hogy az utazás előtt minél többször elővegyék az app-ot?
Így van. Vagy az utazás alatt. Ha belegondolsz, maga a bepakolás a bőröndbe is egy “pain-in-the-neck”. Utána elrepülsz és előveszed a mobilod, hogy keress rajta helyeket, látnivalókat. Az utazás élményéhez alapvetően hozzákapcsolódik a mobil. Ez az, ami nagyon fontos. És ez az, ami egy hatalmas lehetőség a Skyscanner-nek. Az egyik erősségünk, hogy nagyon jó technológiai háttérrel rendelkezünk és teljesen transzparens módon jelenítjük meg az utazási ajánlatokat. Mi minden árat mutatunk, legyen az egy ügynökségé vagy magáé a szolgáltatóé. A jegyfoglalás egyre inkább a mobil platformok irányába tolódik el. És az utazás is esszenciálisan mobil. Mobillal utazol, mobillal fényképezgetsz, majd mindezt mobilon osztod meg és azt mások is mobilon nézik meg.

És ez a stratégiai váltás igényelte azt, hogy bejöjjön a Distinction a képbe?
Igen. A stratégiában mi ezt úgy fogalmazzuk meg, hogy a mobile-first vagy “Travel is mobile.” A másik jelmondatunk pedig, hogy “Travel is social”. Utazol valakivel, utazol valakihez vagy elutazol valakitől, vagy inspirálódsz valakinek az ötlete alapján.

Az hogy eddig nem volt release, azt jeleneti, hogy teszteket nem is nagyon csináltatok?
Nyilván a jelenlegi app-okban számos analitikai könyvtár található, amiken mérjük ezeket a dolgokat. De mi, mint csapat, nem csináltunk még óriási teszteket, mert még nem tart ott a termék. Azok a termékek/feature-ök, amiket mi építünk, egyébként eleve A/B teszt formájában fognak kimenni, tehát először a felhasználók X százaléka fogja megkapni. Összehasonlítjuk a régit és az újat.
Ezenkívül ott van a Hotels app. Annak is hasonlóképpen megy a fejlesztése. Egyébként a Hotelst mi készítettük eredetileg, még a Distinction korszakban.

Hogy néz ki a csapat?
Alapvetően “cross-functional product squad”-ok és “technológiai squad”-ok vannak. Az előbbiben van egy product manager/owner, egy researcher, egy designer – az én csapatomban például pont kettő –, egy tech lead, fejlesztők és tesztelők. Ezek közepes méretű csapatok, tehát körülbelül 8 fősek, amik nagy valószínűséggel szét fognak bomlani kisebb egységekre, ahogy növekszünk. És ott vannak a technológiai squad-ok is. Azok főleg fejlesztőkből állnak Természetesen ott is van egy squad-lead.

Mit csinál a researcher a csapatban?
A researcher-nek a feladata nálunk gyakorlatilag az, hogy a világból insights-okat szedjen össze és azokat a megfelelő formában átadja a termékcsapatnak. Ebbe természetesen beletartozik a kvantitatív és a kvalitatív kutatás is. A researcher pozíciót tehát nagyon flexibilisen értelmezzük. Vannak benne UX research (usability tesztek, interjúk, stb.) és adatelemzési feladatok is.

Hogy néz ki egy ilyen folyamat nálatok?
A termékfejlesztési folyamat erősen támaszkodik a kutatásra. Ez azt jelenti, hogy egészen a kezdeti szakasztól, amikor még nincs semmiféle fejlesztés vagy design, már olyan dolgokkal kezdünk el foglalkozni, amik insight-okból származnak. Pl. korábbi interjúkból derül ki, hogy van igény valamire. Mi ezek alapján kezdünk el dolgozni megoldásokon, designokon, prototípusokon. Azután ezeket validáljuk. Tipikusan teszteltetjük őket különböző felhasználókkal az irodánkban. Sok esetben ezek kód nélküli prototípusok. Ezeket sok szempontból vizsgáljuk. A legfontosabb kérdés, hogy értékes lenne-e a termék vagy funkció a felhasználóknak? Számtalanszor kiderül, hogy nem és akkor ezeket a funkciókat eltávolítjuk a prototípusból vagy megpróbáljuk őket átdolgozni. Közben folyamatosan vizsgáljuk a dizájnok használhatóságát is. Végül amikor eljutunk egy olyan fázisba, amikor azt lehet mondani, hogy ez a termék/feature értékes, használható és megvalósítható, akkor megszületik a döntés, hogy mit is fejlesszünk le. Csak ezután zajlik le a fejlesztés és ezután jöhet a release. Minden terméknek van egy célja. A release során kvantitatív mérésekkel vizsgáljuk, hogy ezt a célt elérjük-e. Ezt a felhasználók tényleges termékhasználata alapján tesszük. A mérésekből levont következtetések alapján aztán iterálunk a terméken.

A kód nélküli teszteket egyébként hogyan kell elképzelni?
Egy egyszerű drótváz jellegű prototípust képzelj el. Csinálunk képernyőket és ezeket összelinkeljük egymással. Nagyon fontos, hogy a tesztek ritmusa adjon egy alapritmust az egész termékfejlesztésnek. Ha jön egy felhasználó, akkor mutatni akarunk neki valamit. Elérakunk egy prototípust, a researcher feladata pedig, hogy végigcsinálja a tesztet. A csapat elemi érdeke pedig, hogy megpróbáljon minél több teszten bent lenni egy héten. Hiszen nem csak a designer-nek, a product manager-nek vagy a researcher-nek, hanem a fejlesztőnek is fontos, hogy lássa, hogy amit megcsinált, az vajon működik, értékes, használható-e. Ezek nagyjából félórás tesztek. Van amikor szcenáriókra épülnek. Tehát pl. “képzeld el, hogy utazni szeretnél és elkezded használni az app-ot, amit letöltöttél” – iOS-en, Androidon, akár tableten vagy telefonon. A felhasználói teszt alatt látjuk, hogy hol hal el a folyamat – közben pedig beszélgetünk a tesztelővel, hogy megértsük a miérteket is. Utána a csapattal átbeszéljük, hogy mi az, amit tanultunk, amit hallottunk. Hiszen előtte voltak feltételezéseink és a teszt végén pedig ezek vagy igazolódnak vagy nem. Ilyenkor látjuk, hogy mi az, ami nem működik, mi az, ami nagyon jól működik és néha látunk olyan dolgokat, amikre esetleg nem is gondoltunk. A tapasztalatom az, hogy az értékesség és a használhatóság kérdéskört 3-4 tesztből meg lehet ítélni.

Van még valami, amin dolgoztok mostanában?
Azon dolgozunk, hogyan építsünk fel egy hosszú távon használható Analytics rendszert, ahol minden egyes felhasználói interakciót naplózunk egy big data store-ba, amit azután lehet elemezni,akár mélyebb statisztikai módszerekkel (korrelációkat megállapítani, stb…). Vagy a klasszikus termékdöntésekhez szükséges módszerekhez is használhatjuk majd ezt: egy funnel-t meg lehet vizsgálni, egy cohort-ot ki lehet elemezni, stb. Mindezt szeretnénk kiegészíteni egy A/B-teszt (feature-switching) megoldással, amivel gyorsan lehet variánsok teljesítményét mérni. Ráadásul szeretnénk, ha ez az első nagyobb release-re megépülne és tudnánk használni. Szerencsére a cégen belül ez nem csak a mi feladatunk, más squad-ok is dolgoznak rajta velünk együtt Edinburgh-ban, Barcelona-ban és más helyeken is, úgyhogy rájuk tudunk építeni.

Milyen érzés egyébként egy ekkora cég részévé válni egyik pillanatról a másikra?
Egy integrációnak számos aspektusa van: kulturális és szervezeti is. Ez a folyamat zajlik most. Iszonyatosan jó az anyacég, rengeteget tanulunk tőlük és ők is sokat szeretnének tanulni tőlünk. Például, hogy milyen is az a Distinction-kultúra, milyen és hogyan lehet átvenni elemeket, amelyek nagyon jól működnek nálunk. Nekünk meg az segít, hogy nagyságrenddel nagyobbak, infrastruktúrát és folyamatokat tekintve.

Köszönöm szépen!

E-commerce adatelemzés interjú – TESCO

Tesco adatelemzés interjúBarabás Lenkével, a Tesco Customer Loyalty and Personalisation Manager-ével beszélgettem a napjaink trendejeiről és arról, hogy hogyan reagál erre a Tesco. Lenkével egy Big Data workshopon találkoztam, ahol mindketten előadtunk. Az ottani prezentációja a Klubkártya programról szólt és ez keltette fel az érdeklődésemet. Ennek működéséről, előnyeiről és big data vonatkozásáról is mesélt nekem részletesen…

Barabás Lenke, TESCO
Barabás Lenke, TESCO

– Te pontosan mivel foglalkozol a Tesco csapatában?
– A Tesco-n belül ez egy teljesen új pozíció, így folyamatosan vannak új és új feladatok. Két fő vonalát emelném ki. Az egyik, hogy minél személyesebb ajánlatokat tudjunk adni a vásárlóinknak. Első lépésként a heti hírlevelek számát szeretnénk csökkenteni. Arra törekszünk, hogy egy hírlevelet kapjanak a vásárlók, de az valóban személyre szóló legyen. A másik a lojalitásépítés. Lojalitásépítés alatt pedig azt értem, hogy a már lojális vásárlókat próbáljuk megtartani, jutalmazni. Főleg jutalmazó rendszerekben gondolkodom – pl. klubokat alapítani, olyan dolgokat csinálni, amivel a lojális vásárlóink egy kis pluszt kaphatnak, különlegesebb bánásmódban részesülhetnek.

– És ha jól tudom, ezekhez használtok adatokat, méghozzá nem is keveset. Mik a főbb irányvonalak?
Az egyik főfókusz most a személyre szóló hírlevél elindítása. A Clubcard adatbázisra tudunk támaszkodni, hiszen ott látjuk, hogy milyen vásárlási szokásai vannak az egyes vásárlóinknak. Ez az egyik nagy adatbázisunk, ami egy párszázezres adatbázist jelent, és azon dolgozunk, hogy ez egyre nagyobb legyen. Fontosnak tartom megemlíteni, hogy a Clubcard-dal mindig tranzakció szintű adatokat nézünk.

– És azt, hogy férfi-e vagy nő? Hogy hány éves?
– Vannak demográfiai adatok a Clubcard-hoz, de ezeket nem használjuk, amikor ajánlatokat, aktivitásokat tervezünk, küldünk. Tranzakciókat nézünk, és ez alapján küldjük az ajánlatokat, a megszemélyesítésre már csak a kiküldésnél kerül sor. Azért sem támaszkodunk demográfiai adatokra, mert egy családban akár többen is használhatják ugyanazt a Clubcard-ot, így szinte lehetetlen, hogy kiderítsük, ki áll a kártya mögött. Viszont családon belül biztosan mindenki megkapja a számára értékes ajánlatot a tranzakciók alapján. Így azt gondolom, ez sokkal relevánsabb információ, mint az, hogy nő vagy férfi a kártya tulajdonos vagy az, hogy hány éves az illető. Természetesen ez sem elhanyagolható információ, de azt már egyéb célokra használjuk.

– Tehát “mutasd a kosarad és megmondom ki vagy”?
– Nagyjából igen, lehet következtetni demográfiai adatokra, de nem szoktunk, mert ebben az esetben a lényeg, hogy mit vásárol, hogy személyre szóló ajánlatokat tudjunk küldeni. Volt egy 5 hetes teszt periódusunk személyre szóló hírlevél küldésre, és kiderült, hogy nagyon szépen teljesít. Kb. háromszoros volt maga a hírlevél-megnyitási arány. Ez alapján valószínűsíthető, hogy ez egy nagyon hatékony dolog, de még több számra és pontosabb tesztekre van szükségünk, hogy többet tudjak róla mondani.

– Mi a projekt jövője? Mik az “álmok”?
– Az álom az, hogy mindenki egy személyre szóló hírlevelet kapjon heti szinten. Ne nyolcat, hanem egyet, de abban valóban csak az legyen, ami őt érdekli.

– Ha ezek a perszonalizált hírlevelek elindulnak, akkor az azt jelenti, hogy ha én pl. sok kenyeret, virslit és mustárt vettem, akkor nekem ezt a kenyeret-virslit-mustárt fogjátok ajánlani olcsóbban? Vagy inkább termékcsatolással melléteszitek, hogy érdekelhet a majonéz, az uborka, stb?
– Ha akciós az uborka vagy a mustár, és rendszeres vásárlója vagy a terméknek, akkor arról biztos, hogy kapsz ajánlatot hírlevélben. A későbbiekben jöhetnek egyéb extra ajánlatok is, rengeteg lehetőség rejlik még ebben, de pontosan nem tudom még megmondani, hova juthatunk rövid távon.

– Olyasmit terveztek, hogy ha valaki egy terméknek a rajongója, pl. sok fekete pólót vesz, akkor ő személy szerint kap akciót a fekete pólóra?
– Igen, ilyen jellegű aktivitásokat már tudunk csinálni, ún. kasszakuponokon keresztül. A Clubcard-os vásárlókat már elkezdtük ezzel jutalmazni. A példádnál maradva, ha látjuk, hogy vásároltál fekete pólót, akkor egy aktivitás keretében be tudjuk azt állítani, hogy a legközelebbi vásárlásod során kapj egy olyan kupont, amivel kedvezményesen veheted meg a kedvenc pólód egy legközelebbi vásárlásod esetén. Ebben is sok lehetőség rejlik, még a tesztfázisban vagyunk, és sokat tanulunk.

– Tehát mondhatjuk, hogy nálatok az adatelemzés és a big data arra megy rá, hogy személyesítsétek a tömegkommunikációt…
– Egyrészről igen, de nem csak a kommunikációt, hanem az ajánlatainkat is. A személyes véleményem az, hogy akkora a piaci verseny már az élelmiszer piacon (is), hogy mindig meg lehet venni az alapvető élelmiszereket, nem élelmiszereket akcióban. A mi célunk ennél több, szeretnénk, ha a vásárlóink olyan kedvezményeket kapnának, ami számukra fontos és releváns, akár állandó jelleggel megvehessék kedvenc terméküket kedvezményesen.

– Köszönöm szépen az interjút!

 

Vendégblog: A Fehér Karácsony legendája (elemzés)

Az alábbi karácsonyi bejegyzést Tóth Gábor írta. (Gábor TedX előadását megtekinthetitek: itt.) Fogadjátok szeretettel:

Karácsony közeledtével egyre sűrűbben tesszük fel a kérdést, fehér lesz-e az idei karácsony. Mikor azonban szembesülünk a ténnyel, idén is elmarad a karácsonyi havazás, nosztalgiába merülve idézzük fel gyerekkorunk hóban gazdag karácsonyait. Ilyenkor általában elhangzik a jól ismert mondat, „Régen sokkal több fehér karácsony volt”.

A globális felmelegedés lenne a jelenség hátterében, esetleg csak az idő szépítette meg az emlékeket? Egyáltalán mennyire gyakori jelenség a fehér karácsony, és melyik magyarországi városban számíthatunk rá leginkább? Az Országos Meteorológiai Szolgálat közel 100 évet átfogó, szabad felhasználású klímaadataival választ kaphatunk ezekre a kérdésekre.

Hagyatkozzunk egyelőre csupán egy jól ismert népi megfigyelés mely szerint, ha Katalin locsog, karácsony kopog, vagyis a Katalin-napi fagy, saras karácsonyt hoz, míg az esős hideg, hóban gazdag karácsonyt.
Téved-e Katalin? 1901 és 2000 között öt különböző városra vizsgálva a Katalin-napi (november 25) átlaghőmérsékletet, és a karácsonykor tapasztalt csapadékformát az alábbiakat kapjuk:

feher karacsony adatok 1

A népi megfigyelés Budapesten a vizsgált időintervallum 45%-ában helyesnek bizonyult, míg Katalin Szombathelyen teljesített a leggyengébben, a maga 35%-ával.

A fehér karácsony definíciója eltérő az egyes országokat illetően. Magyarországon akkor beszélünk fehér karácsonyról, ha december 24.-én több magyar nagyvárosban mérhetünk hótakarót. A hótakaróra vonatkozó adatok 100 éves viszonylatban sajnos nem elérhetőek, így esetünkben vizsgáljunk olyan karácsonyi napokat, amikor a csapadék formája hó, esetleg havas eső volt, hiszen ezen esetekben jó eséllyel alakulhat ki hótakaró is.

Az alábbiakban városokra bontva látjuk, az elmúlt 100 év alatt hány darab olyan karácsonyi nap volt, amikor havazott, illetve havas eső hullott.

feher karacsony adatok 2

Érdekes megfigyelni, hogy míg karácsony napjai alatt Budapest, Szeged, és Debrecen esetén növekvő tendenciát mutat a havas napok száma, Szombathely és Pécs esetén december 25.-én éri el a maximumot.

Ha szigorítunk a feltételeken, és azokat az eseteket vizsgáljuk, amikor szentestén és karácsony mindkét napján hullott hó, vagy havas eső, az eredmény egészen megdöbbentő lesz. Az abszolút fehér karácsonyok száma egészen alacsony, Szombathelyen 100 év alatt mindössze három alkalommal fordult elő, hogy a vizsgált napok mindegyikén havazzon, míg Budapest, és Szeged holtversenyben első helyen végeztek.

feher karacsony adatok 3

Most, hogy tudjuk a fehér karácsony ritka jelenség, joggal vetődik fel a kérdés, melyik városban volt a legcsapadékosabb karácsony az elmúlt közel 100 év alatt.

Pécsett 1918 karácsonya az abszolút rekorder, szenteste és karácsony két napja alatt 35,7 mm csapadék hullott, ami a város átlagos decemberi csapadékmennyiségének 76%-át jelenti!

feher karacsony adatok 4

Bár idén nagy valószínűséggel szintén hó nélkül maradunk a karácsonyi ünnepek alatt, semmiképp se csüggedjünk, januárban már biztos megérkezik a csapadékos tél.

Tóth Gábor