stratégia címkével jelölt bejegyzések

Online kutatásmódszertan – a keretrendszer, amit az Adatlabornál használunk

Az elmúlt 2 évben sok online projekt elemzését készítettük el – főleg webshop és startup vonalon. Így óhatatlanul is kialakult egyfajta keretrendszer, amit mostmár folyamatosan használunk. Ezt az anyagot általában az Adatvezérelt Marketing Képzésünk bevezetéseként szoktam bemutatni, de most szerettem volna nagyobb közönséggel is megosztani.

A keretrendszer – azaz az elemzési folyamat, amit használunk, nagyon egyszerű és 4 lépcsőből áll.

online kutatásmódszertan
Az Adatvezérelt Marketing Képzés vetített anyagából

Online kutatásmódszertan – a keretrendszer, amit az Adatlabornál használunk bővebben…

Honnan tanuljunk az adatelemzésről? – 2. rész

Ebben a bejegyzésben megosztok néhány könyvet és online kurzust, amelyeket az utóbbi időben elolvastam/megnéztem és színvonalasnak, hasznosnak találtam. Sok a (big) data-s tananyag a neten, hát még könyvek formájában – sok köztük a selejt is. De szerencsére van köztük jó néhány nagyon jó anyag is.

(Az első részben már mutattam 3 könyvet: http://adatlabor.hu/big-data-konyv-1-resz/)

Íme újabb 4 tananyag, amit érdemes magadévá tenni, ha érdekel a téma!

Honnan tanuljunk az adatelemzésről? – 2. rész bővebben…

Látogatók és forgalom mérése UTM tag segítségével

Papp Gábor
Papp Gábor, thepitch.hu

Mai vendégszerzőnk Papp Gábor a thepitch.hu alapítója, SEO és online marketing szakértő! Egy kifejezetten fontos témát mutat be nekünk: a linkkövetést UTM-tag-ekkel!

Amikor 2016 januárjában elindítottuk a The Pitch Online Marketing blogját, akkor határozott célkitűzés volt előttünk, hogy tudatosan és adatvezérelt módon fogjuk gyűjteni és elemezni az adatokat. Ezeket pedig nem csak azért gyűjtjük, hogy ott legyenek a Google Analytics fiókban, hanem ténylegesen teszünk is azért, hogy ezekből a technikai információkból üzleti információt faragjunk. Vagyis olyan infót, amiből később üzleti értéket lehet teremteni.

Akik számára a tartalommarketing és az elkészült tartalom megosztása egy fontos marketingcsatorna, azok számára az utm tagek használata az egyik legjobb és leghasznosabb elemzést segítő megoldás. Látogatók és forgalom mérése UTM tag segítségével bővebben…

Adatvezérelten – az első pár lépés

Az utóbbi időben több képzésünkön is előjött a kérdés, hogy ha egy már működő online biznisz per-pillanat még semmilyen szinten sem elemzi a saját adatait, akkor mégis hogyan lehet és hogyan érdemes belevágni.
A hosszútávú, profi megoldás persze az, hogy ha felépíted minél előbb a saját adattárházadat, amiből függetlenül és rugalmasan tudod elemezni az adataidat. De hát azért elég gyakori, hogy erre se pénz, se idő, se emberi erőforrás nem áll rendelkezésre.
Ha ez Veled is így van, akkor most leírok három projektet, amivel kis ráfordítással nagy hasznot érhetsz el.
De mindenek előtt: mi lehet ez a haszon?

Adatvezérelten – az első pár lépés bővebben…

Funnel analízis

Mi az a Funnel analízis?
Egy mondatban: Egyetlen erőteljes elemzési módszer, amely megmutatja az egész felhasználói életút legsarkalatosabb pontjait.

Vagy inkább egy képben:

Funnel alanlízis egy képben
Funnel alanlízis egy képben

Hogyan is működik a Funnel metrika a gyakorlatban? Mik a legnagyobb kérdések és elakadások? Hogyan lehet belőle “actionable” tudást kiszedni?  Hogyan tudod elkészíteni magadnak? Vegyük sorra! Funnel analízis bővebben…

Visszatérő felhasználók mérése

Ha online bizniszben mozogsz, akkor az alábbi 2 cél biztosan szerepel a listádon:
1. Minél több új felhasználót behozni.
2. Minél több már meglévő felhasználót többszörösen visszatérő felhasználóvá konvertálni.

A visszatérő felhasználók mérése az egyik olyan terület, ahol már a definíciók szintjén is kérdésekbe fogsz ütközni, illetve ahol esetleges rossz definíciók okán a legkönnyebben becsaphatod magad. Ez a cikk ezt a problémát próbálja megelőzni! :-)

Visszatérő felhasználók mérése bővebben…

Big Data könyv 1. rész – Mit érdemes olvasni?

A nyáron volt egy kis időm olvasgatni, így hát beszereztem több Big Data könyvet is!

Big Data Könyv 1 - Schönberger, Cukier1. Viktor Mayer-Schönberger & Kenneth Cukier: Big Data

értékelés: 2/10
Őszintén: nagyon megbántam, hogy rászántam az időmet erre az írásra. 200 oldalon keresztül sztorizgat, hasonlatokat hoz – néha nem is Big Data-ról – és a tényleges tartalmát kb 5 oldalban össze lehetne foglalni. A stílusa élvezhetetlen, nagyon szájbarágós, folyamatosan ismételgeti önmagát – ráadásul olyan dolgokban (korreláció vs. kauzalitás), amiben nem is feltétlenül van igaza. A jó történeteket (Google Flue Trends, Netflix, Amazon, etc.) egyébként már mind-mind olvashattuk online a kiemelt hírek között is az elmúlt 10 évben.
Azoknak ajánlom, akik szeretnének egy új – trendi – társalgási témát bedobni az esti borozgatásokhoz a baráti társaságban… De gyakorlatiasságra vagy arra, hogy megtudd, mi az a Big Data, ne számíts! (Ez csak azért szomorú, mert – megtévesztő módon – ez a könyv címe.)

Big Data könyv 2 - Lean Analytics2. Croll & Yoskovitz: Lean Analytics

értékelés: 9/10
Ellentétben az előző könyvvel, ezt 100%-osan ajánlom mindenkinek, aki adatvezérelten akar akármilyen bizniszt felépíteni. Nem kifejezetten Big Data könyv, sokkal inkább adatstratégiáról szól, de nagyszerű gondolatindító. Ha big data-val fogsz dolgozni üzleti fókusszal, akkor egyértelműen alapmű. Ha pedig ugyanezt teszed, de technológiai fókusszal, akkor ez a minimum, amit látnod kell az üzleti oldalról.
A könyv legnagyobb előnye, hogy nagyon-nagyon gyakorlatias. 31 fejezeten keresztül leírja az összes módszertant, illetve tesztelési, elemzési és egyéb praktikákat, amelyeket a menő “data-driven” cégek már kipróbáltak és sikerrel alkalmaznak. Minden fejezet végén megkapod a saját kis “házi feladatodat”, így rövid távon gyakorlatba ültetheted a tudást.

Big Data Könyv 3 - I heart logs3. Jay Kreps: I heart Logs

értékelés: 8/10
Ha az előző írás a startégiai, akkor ez a technológiai alapmű. Jay Kreps a LinkedIn adatinfrastruktúráját építette fel és közben olyan Big Data technológiát támogató open-source projekteket hozott létre, mint a Kafka, a Samza vagy az Azkaban. Ebből sejtheted, hogy nagyjából a füzet minden szava arany. Sajnos elég rövid (50 oldal), de egyúttal tömör és lényegretörő is. Mire a végére jutsz, biztosan érteni fogod, hogy mi az a log, mi köze van ennek a Big Data-hoz és hogy hogyan kell összedrótozni egy normális adatinfrastruktúrát. Betekintést kaphatsz abba, amit a LinkedIn anno a saját bőrén tanult meg – ami nem csak érdekes, de iszonyatosan hasznos is.

A könyveket itt veheted meg:
I heart Logs: http://shop.oreilly.com/product/0636920034339.do
Lean Analytics: http://leananalyticsbook.com

Ha pedig tréningen vagy képzésen ismerkednél meg az alapokkal:

Big Data Képzés: KLIKK!
Adatvezérelt Marketing Képzés: KLIKK!

Tomi

Mobil App mérések – miért, mit és hogyan?

Tudtad, hogy a letöltött mobil app-ok 80%-át az első használat után törlik a felhasználók a telefonjukról? Hogy bent maradj a kellemes 20%-ban, elengedhetetlen, hogy reagálj a user-eid viselkedésére! Ehhez pedig mérned kell. Ugyanúgy, mint desktop-os internetes alkalmazásoknál… habár az elmélet és a gyakorlat is egy kicsit más. Ebben a cikkben leírom azt a néhány best practice-t, amivel már könnyen el tudod kezdeni a mobil app-od mérését!

MIÉRT MÉRJEM A MOBIL APP-OM?

Az egyik legfontosabb kérdés, hogy miért is mérsz? Erről már többször is írtam, de nem győzöm mindig hangsúlyozni, hogy akármit is mérsz: legyen egy jól definiált üzleti célod!
Ezt a célt állapotban két dolog határozza meg (Rajtad kívül). Az egyik, hogy milyen bizniszben vagy, a másik pedig hogy milyen szakaszában a növekedésnek.

Ha pl. egy érett e-commerce bizniszen dolgozol, akkor az egyik legfontosabb célod a Revenue, azaz a bevételed lesz.
Ha egy korai fázisú startup-on, akkor inkább az engagement-re és az activation-re fókuszálj, azaz arra, hogy a felhasználók egyáltalán megértsék a termékedet és elkezdjék használni – no meg persze, hogy elégedettek legyenek vele.
Egy feltörekvő média oldalnak pedig általában a retention-re fekteti a hangsúlyt, tehát a visszatérő látogatók számára és a visszatérések sűrűségére.

Ha megvan a célod, akkor már könnyen választ adhatsz a miért-re. Azért mérsz, hogy ezt a célt minél könnyebben elérd és ha nem sikerül, akkor megértsd, hogy miért nem sikerült. És persze, hogy tudd, hogy hol, mikor, mit és hogyan kell változtatnod.

MIT MÉRJEK A MOBIL APP-OMBAN?

Egy mobil app persze elég speciális biznisz. Van egy-két dolog, amit a legtöbben mérnek és ami gyakorlatilag kikerülhetetlen, ha ezen a területen dolgozol. A 3 leggyakoribb:

1. Onboarding funnel

Mobil App Onboarding Funnel
Mobil App Onboarding Funnel

Ahogy a képen is látszik, az onboarding során lépésről lépésre kiesnek az emberek. pl. 1300-an letöltik az app-ot, 800-an elindítják, 400-an beregisztrálnak, 100-an pedig elkezdik használni tényleg a terméket, stb, stb… A lényeg, hogy lásd, hogy hol esnek ki a legtöbben és, ha ez a szám nagyon nem illik az elképzeléseidbe, akkor tudd, hogy ott valamit változtatnod kell.

A mobil app-oknál a legtöbb onboarding funnel így néz ki.
1. lépés: Letöltések száma (pl. 1000 db)
2. lépés: Launch (pl. 800 db)
3. lépés: Regisztráció (pl. 600 db)
4. lépés: Elkezdik használni a terméket (pl. 400 db)
5. lépés: Végére érnek az első körnek, a tanulási (más néven onboarding) folyamatnak (pl. 200 db)

Az 5. lépés egyébként trükkös, ezért szét szoktuk bontani 3-4 allépésre. Akkor vesszük úgy, hogy egy felhasználó elérte az 5. lépést és “onboarded” lett, ha már tudjuk, hogy minden olyan funkciót használt, ami kell ahhoz, hogy értse a termék előnyeit.
pl. ha egy idegenvezető mobil app-od van, ami a füledre mondja egy városban, hogy merre menj és mit kell tudni a nevezetességekről, akkor valami ilyesmi lehet az onboarding funnel-ed vége:

4. lépés: Kiválaszt a user egy túrát.
5. lépés: Odamegy a túra kezdőpontjára.
6. lépés: Elindítja az audio guide-ot.
7. lépés: Eljut a túra felére.
8. lépés: Végigér a túrán.

Aki végigért a túrán, nagy eséllyel találkozott az app összes főfunkciójával és érti, hogy mi a jó benne. Utána, hogy újra használja-e már, az egy másik kérdés.

2. Retention – visszatérés

Az egyik legütősebb metrika a felhasználó elégedettség vizsgálatára: a visszatérések száma és aránya. Tehát azok közül, akik múlt héten használták az app-odat, hányan használják újra. Itt nem feltétlenül megnyitásról beszélünk, hanem pl. egy core-feature használatáról (mint pl. a spotify-nál a zenelejátszás).

Itt is érdemes Neked definiálnod, hogy mi az ideális visszatérési sűrűség. Pl. ha egy média app-od van (, ahol naponta jelennek meg új cikkek,) vagy egy self-tracker alkalmazásod (, ahova minden reggel beírod, hogy milyen kedved van), akkor érdemes napi retention-t mérned. Egy Uber típusú app-nál a heti retention már logikusabbnak tűnik, egy repülőjárat kereső alkalmazásnál pedig akár a (több-)havi retention is indokoltnak tűnhet, hiszen a legtöbb ember amúgy sem utazgat minden héten vagy hónapban repülővel. (Azért törekedj minél kisebb retention time-ot belőni, mivel ha változtatsz valamit az app-odban és szeretnéd a retention-re gyakorolt hatását látni, mindig annyit kell majd várnod az első adatpontodra, amekkorára a retention definíciód be van állítva.)

Ha ez megvan, akkor nincs más dolgod, minthogy meghatározd a napi, heti vagy havi visszatérő látogatóid számát és arányát. És, hogy próbáld ezt a számot minél magasabbra tolni!

A retention címszó alatt még több dolgot is mérhetsz. Pl. a churn, azaz a lemorzsolódások aránya (pl. hányan uninstall-álták az alkalmazást, vagy hányan nem tértek vissza legalább a retention time-od 10-szereséig.) Vagy idetartozik az active/passive user-ek aránya. Azaz, hogy az összes user-edből hány % aktív.

3. Revenue – bevétel

A bevételt is többféleképpen mérheted. Itt persze attól is függ a dolog, hogy pontosan, hogy monetizálsz (fizetős app? reklámokból? in-app eladásokból? stb…), de a leg fontosabb alapmérések:

  • Első fizetésig eltelt idő
  • Fizetős user-ek aránya (hány ingyenes felhasználóra jut egy fizetős)
  • Havi átlagos bevétel user-enként
  • CLV – Customer Lifetime Value: Ez már egy összetettebb számítás, ami megmutatja, hogy az adott lemorzsolódási arányok és havi átlagos bevételek mellett egy user kb. mennyi pénzt termel az applikáción keresztül Neked onnantól, hogy beregisztrált, egészen addig, hogy letörli az app-ot.
    customer lifetime value mobil app mérés

Ez most csak 3 dolog – onboarding, retention és revenue -, de az alapok lefektetéséhez elég, aztán lehet továbbrészletezni még…

HOGYAN MÉRJEM A MOBIL APP-OM?

A millió dolláros kérdés: milyen eszközzel mérjem a mobil app-omat?
A jó hír hogy rengeteg lehetőség van…
Amit mindenképpen ajánlok az a Google Mobile Analytics. Ingyenes, mindent tud, ami kellhet. A korlátai pedig ugyanazok, mint a Google Analytics-nek. Csak report-olásra jó.
Ha szeretnél eggyel továbblépni, akkor itt is a Mixpanel az egyik legerősebb játékos a piacon. A Mixpanel-lel már viselkedés alapján tudsz szegmentálni, automatizált e-mail marketing-et beállítani, stb…
Ezeken kívül még rengeteg tool létezik, pl. az ingyenes Flurry Analytics vagy a kifejezetten crash-ek mérésére szolgáló Crashlytics – de azt is kevesen tudják, hogy az Optimizely-t is lehet használni mobil app AB-tesztelésre…

Egy szó mint száz

A lehetőségek és az eszközök adottak! Kezdd el mérni az app-odat és meglátod, sokkal tudatosabban, gyorsabban és eredményesebben tudsz majd fejlődni!
Sok sikert!

Ha szeretnél még ilyen cikkeket olvasni, iratkozz fel a hírlevelünkre!

Mester Tomi

Hogyan mérd az MVP-det?

Mostanában több viszonylag korai fázisú – MVP startoltatás előtti pillanatokban levő – startuppal is dolgoztunk 1-2-3 konzultáció erejéig – és mindig ugyanaz volt a kérdés: ha megvan az MVP, akkor hogyan – és főleg mit mérjünk?

Itt 3 főelv van:
1. Az OMTM-elv
One Metric That Matters – azaz egy darab célt jelölj ki! Egyet és ne többet! És ezt az egy célt helyezd a méréseid fókuszába. Hogy ez mi legyen azt iszonyatosan fontos már a startolás előtt, a legelején eldönteni.
Sok olyan cég van, aki megérzésből nyomja a dolgokat és adatok nélkül dönt. Aztán vagy bejön nekik vagy nem. De a másik véglet sem jobb – ha az ember 40 dolgot figyel egyszerre, akkor előbb-utóbb azon kapja magát, hogy egész nap csak a chart-okat nézegeti, de értelmes és értékes döntést még nem sikerült hoznia. Ha túl sok mindent mérsz, az összezavarhat. Legyen meg a fókusz: Mérj egy dolgot és határozza meg az, hogy merre mész tovább!

2. Engagement központúság
És hogy mi legyen az a bizonyos “Egy Mérés, Ami Számít”?
Természetesen ez a termékedtől függ, de MVP fázisban az biztos, hogy ez a metrika valahol az engagement, azaz a felhasználói elégedettség környékén keresendő.
NEM jó OMTM a regisztrált felhasználók száma. A regisztrált felhasználók száma semmilyen érdembeli visszajelzést nem ad a termékedről, maximum a value proposition-ödről (de azt jó esetben validáltad már eddigre landing page tesztekkel és kvalitatív vizsgálatokkal) vagy a marketing erődről. Egy csomó embert hallok büszkélkedni, hogy elérte a 1.000 (2.000, 5.000, stb…) regisztrált felhasználót. De ha ebből 10-15 aktív felhasználója van, akkor bizony az a 2.000 nem sokat ér.
NEM jó OMTM a bevétel nagysága/fizetések száma sem. Ehhez még túl korai szakaszban van a termék – úgyse fog elég pénz bejönni, akkor meg kár ezen stresszelni magadat.

A jó OMTM a termék használatára vonatkozik. Használják-e az emberek a főfunkcióidat? Minden funkciót használnak vagy csak néhányat? Úgy használják, ahogyan tervezted? És a legfontosabb: az első látogatás/regisztráció után visszajönnek mégegyszer használni a termékedet?

Jó mérőszámok lehetnek:
– az aktivált felhasználók száma  (pl. a Spotify-nál aktivált felhasználó az, aki beregisztrál és meg is hallgat legalább egy számot – a Prezinél aktivált felhasználó, aki beregisztrál, elkészíti és bemutatja az első prezijét, stb…)
– az aktivált felhasználók aránya (ugyanaz, mint a fenti, csak %-ban, hogy lásd, hogy a regisztráltak mekkora része aktiválódik)
– a visszatérő felhasználók aránya. Hányan döntenek úgy, hogy újra használják a termékedet?
– a visszatérés ideje. Mennyi idő után jönnek vissza az emberek? 1 nap, 1 hét, 1 hónap?

És emellett persze folyamatosan monitorozd azt, hogy melyik feature-öket használják az emberek és melyikeket nem.

3. Csináld meg egyszerűen!
Ebben a szakaszban az a lényeg, hogy gyorsan tudj mérni – ne tölts vele túl sok időt. Mivel lehet ezt megoldani? Ha csak nincs a kisujjadban a log-gyártás, akkor smart tool-okkal. Tök őszintén: valószínűleg egy jól beállított (konverziók, demográfia, stb.) Google Analytics is elég lesz. Ha pro akarsz lenni, akkor vagy egy Kissmetrics-et vagy egy Mixpanel-t felteszel az Analytics helyett, de ennél többre valószínűleg tényleg nem lesz szükséged ebben a szakaszban.

Mégegyszer összefoglalva:
1. Egy dolgot mérj!
2. Ez az egy dolog a termék használatára és a felhasználói elégedettségre fókuszáljon!
3. A lehető legegyszerűbben valósítsd meg (Analytics, Kissmetrics vagy Mixpanel)

Ha pedig egy szinttel feljebb lépnél, gyere el az Adatvezérelt Marketing Képzésünkre, ahol beszélünk linkkövetésről, AB-tesztelésről, UX kutatásról, a lepattanó user-ek visszanyeréséről és megannyi finomságról, ami ebbe a cikkbe már nem fért bele (még 6 szabad hely van)! :-)
http://adatlabor.hu/adatvezerelt-marketing-trening/

Mester Tomi

(Inspiráció: leananalyticsbook.com)

Adatsztori 2. rész: tinilányok, müzli, kauzalitás

Nemrég hallottam Dr. Mine Cetinkaya-Rundel professzor asszony webináriumán az egyik legjobb esettanulmányt a korreláció vs. kauzalitás problémájának szemléltetésére:

2005-ben volt egy kutatás, ahol több mint 2000 darab 9 és 19 év közötti lányt kérdeztek reggelizési szokásaikról. A felmérés része volt, hogy az év során egyszer véletlenszerűen megkérdezték a lányokat arról, hogy mit ettek az elmúlt 3 napban. Azt találták, hogy azok a lányok, akiknél a válasz az volt, hogy müzlit ettek reggelire, szignifikánsan alacsonyabb testzsír-index-szel rendelkeztek, mint azok, akik valami mást.

A kutatás következtetése: a müzlitől soványabb leszel.
Csakhogy ez a következtetés: HIBÁS!

Miért?Mert ez a kutatás egyedül azt mutatja meg, hogy van valamilyen összefüggés a müzli és a testzsír-index között, de az ok-okozati kapcsolatot nem lehet belőle megállapítani. Gondolj bele! Valójában 3 jó megoldás is létezik:
1. Lehet, hogy – valóban -, aki müzlit eszik, az soványabb lesz.
2. De az is elképzelhető, hogy az eleve soványabb emberek valamiért jobban szeretik a müzlit. Tehát a soványság következménye a müzlifogyasztás.
3. Vagy esetleg valami külső okból származik mindkét dolog (soványság, müzlifogyasztás) és köztük közvetlen ok-okozati összefüggés nincs is. Pl. aki eleve egészséges életmódot folytat, az szeret müzlit enni és a testzsír-indexe is alacsonyabb, hiszen pl. sportol is. De ez nem azt jelenti, hogy a müzli önmagában soványabbá tesz, jelentheti azt is, hogy a sportos emberek fejében az van, hogy müzlit kell enniük.

Dr. Mine Cetinkaya-Rundel
Dr. Mine Cetinkaya-Rundel ábrája -korreláció vs. kauzalitás


Mi a tanulság ebből?
A fenti probléma egy közismert adatelemzési problémakör része az adatvezérelt üzletek világában is. A neve: korreláció vs. kauzalitás. Az általános megállapítás az, hogy ok-okozati viszonyt (kauzalitást) soha sem lehet megállapítani visszatekintő elemzésekből. Ezekből mindig csak és kizárólag összefüggést (korrelációt) lehet kikövetkeztetni.
A kauzalitás tényleges megállapítására egyedül az ún. kontrollcsoportos vizsgálatok valóak. Tehát a fenti példában a korrekt megoldás az lett volna, hogy a lányokat két csoportra szedik és az egyik csoportnak müzlit adnak enni minden reggelire, a másiknak pedig akármi mást. Majd figyelik, hogy hogyan változik a testzsír-indexük. Ha itt nyer a müzlis szegmens, akkor már valóban mondhatjuk, hogy a müzli soványabbá tesz.

Ez a módszertan az offline világban elég nehézkes, habár vannak rá példák…
Az online világban viszont nagyon egyszerűen kivitelezhető: ez az, amit A/B tesztelésnek neveznek. Jellemzően a korreláció vs. kauzalitás problémáját akkor érdemes A/B teszteléssel megoldanod, ha egy új funkciót (új feature-t) vezetsz be az oldaladon. Ilyenkor ugyanis el tudod dönteni, hogy valóban az új feature volt hatással a közönséged elköteleződésére (jó eset) vagy a közönséged eleve elkötelezettebb része érdeklődött az adott funkció iránt (kevésbé jó eset).

Összefoglalva: semmilyen kérdőív eredményből, felmérésből vagy visszatekintő elemzésből ne vonj le elhamarkodott következtetéseket! Próbálj helyettük minél több AB-tesztet és/vagy kontrollcsoportos vizsgálatot végezni!

Mester Tomi