képzés címkével jelölt bejegyzések

Honnan tanuljunk az adatelemzésről? – 2. rész

Ebben a bejegyzésben megosztok néhány könyvet és online kurzust, amelyeket az utóbbi időben elolvastam/megnéztem és színvonalasnak, hasznosnak találtam. Sok a (big) data-s tananyag a neten, hát még könyvek formájában – sok köztük a selejt is. De szerencsére van köztük jó néhány nagyon jó anyag is.

(Az első részben már mutattam 3 könyvet: http://adatlabor.hu/big-data-konyv-1-resz/)

Íme újabb 4 tananyag, amit érdemes magadévá tenni, ha érdekel a téma!

Honnan tanuljunk az adatelemzésről? – 2. rész bővebben…

Adatvezérelten – az első pár lépés

Az utóbbi időben több képzésünkön is előjött a kérdés, hogy ha egy már működő online biznisz per-pillanat még semmilyen szinten sem elemzi a saját adatait, akkor mégis hogyan lehet és hogyan érdemes belevágni.
A hosszútávú, profi megoldás persze az, hogy ha felépíted minél előbb a saját adattárházadat, amiből függetlenül és rugalmasan tudod elemezni az adataidat. De hát azért elég gyakori, hogy erre se pénz, se idő, se emberi erőforrás nem áll rendelkezésre.
Ha ez Veled is így van, akkor most leírok három projektet, amivel kis ráfordítással nagy hasznot érhetsz el.
De mindenek előtt: mi lehet ez a haszon?

Adatvezérelten – az első pár lépés bővebben…

Funnel analízis

Mi az a Funnel analízis?
Egy mondatban: Egyetlen erőteljes elemzési módszer, amely megmutatja az egész felhasználói életút legsarkalatosabb pontjait.

Vagy inkább egy képben:

Funnel alanlízis egy képben
Funnel alanlízis egy képben

Hogyan is működik a Funnel metrika a gyakorlatban? Mik a legnagyobb kérdések és elakadások? Hogyan lehet belőle “actionable” tudást kiszedni?  Hogyan tudod elkészíteni magadnak? Vegyük sorra! Funnel analízis bővebben…

Big Data technológia. Játszótér – avagy hogy próbáljuk ki?

Sok cég (főleg külföldön) úgy kísérletezik a Big Data technológiákkal (Hadoop, MapReduce, Spark, etc…), hogy nincs is igazán szüksége rájuk. Sőt… A probléma az, hogy bár a legtöbb Big Data technológia open-source (aka. ingyenes), mégis sok pénzbe kerül már a kipróbálás is a szerverköltségek miatt, illetve a konfigolási idő miatt (emberi erőforrás).

De hogyan lehet “okosba” kipróbálni a Big Data technológiákat?

Nem kell feltétlen a céges büdzséből egy nagy szeletet lekanyarítani (szerverköltségre, insfrastruktúra-szetapolásra), hogy legyen egy játszóterünk. Több megoldás is létezik arra, hogy az ember ingyenesen kipróbálhassa a technológiákat:
Big Data technológia. Játszótér – avagy hogy próbáljuk ki? bővebben…

Az idei utolsó Big Data Tréning és Adatvezérelt Marketing Képzés

Meghirdettük, idén utolsó alkalommal:

BIG DATA KÉPZÉS – 11.27 – PÉNTEK
Jelentkezni itt tudsz: KLIKK!
big data utolso képzés
ADATVEZÉRELT MARKETING TRÉNING – 12.04 – PÉNTEK
Jelentkezni itt tudsz: KLIKK!
adatvezérelt marketing képzés utolsóGyere, jó lesz!

Októberi Big Data Tréning és Adatvezérelt Marketing Képzés

Októberben jönnek az új alkalmak!
Mindkét képzés – szokás szerint – max. 12 fővel indul és októberben csak 1-1 alaklom lesz, úgyhogy vigyázz, nehogy lemaradj! : )

Október 9. – Big Data Tréning

Tóth Zotya, Mester Tomi, big data tréning


Október 16. – Adatvezérelt Marketing Tréning

adatvezérelt marketing tréning
Várunk szeretettel!

Tomi

Tréningek: Big Data, Adatvezérelt Marketing újra!

Jön a szeptember – és szeptemberrel újra jönnek az Adatlabor képzések is!
Hasonlóan a korrábiakhoz, mindkét tréningünk létszámát maximáljuk 12 főben és mivel ez elég gyorsan beszokott telni, azt javasoljuk, ne habozz – hanem jelentkezz! : )

Szeptember 11. – Big Data Tréning

Tóth Zotya, Mester Tomi, big data tréning

Szeptember 18. – Adatvezérelt Marketing Tréning

tréning oktatók Németh Anna Pásztor Dávid Mester Tomi
Várunk szeretettel!

Tomi

Adatsztori 2. rész: tinilányok, müzli, kauzalitás

Nemrég hallottam Dr. Mine Cetinkaya-Rundel professzor asszony webináriumán az egyik legjobb esettanulmányt a korreláció vs. kauzalitás problémájának szemléltetésére:

2005-ben volt egy kutatás, ahol több mint 2000 darab 9 és 19 év közötti lányt kérdeztek reggelizési szokásaikról. A felmérés része volt, hogy az év során egyszer véletlenszerűen megkérdezték a lányokat arról, hogy mit ettek az elmúlt 3 napban. Azt találták, hogy azok a lányok, akiknél a válasz az volt, hogy müzlit ettek reggelire, szignifikánsan alacsonyabb testzsír-index-szel rendelkeztek, mint azok, akik valami mást.

A kutatás következtetése: a müzlitől soványabb leszel.
Csakhogy ez a következtetés: HIBÁS!

Miért?Mert ez a kutatás egyedül azt mutatja meg, hogy van valamilyen összefüggés a müzli és a testzsír-index között, de az ok-okozati kapcsolatot nem lehet belőle megállapítani. Gondolj bele! Valójában 3 jó megoldás is létezik:
1. Lehet, hogy – valóban -, aki müzlit eszik, az soványabb lesz.
2. De az is elképzelhető, hogy az eleve soványabb emberek valamiért jobban szeretik a müzlit. Tehát a soványság következménye a müzlifogyasztás.
3. Vagy esetleg valami külső okból származik mindkét dolog (soványság, müzlifogyasztás) és köztük közvetlen ok-okozati összefüggés nincs is. Pl. aki eleve egészséges életmódot folytat, az szeret müzlit enni és a testzsír-indexe is alacsonyabb, hiszen pl. sportol is. De ez nem azt jelenti, hogy a müzli önmagában soványabbá tesz, jelentheti azt is, hogy a sportos emberek fejében az van, hogy müzlit kell enniük.

Dr. Mine Cetinkaya-Rundel
Dr. Mine Cetinkaya-Rundel ábrája -korreláció vs. kauzalitás


Mi a tanulság ebből?
A fenti probléma egy közismert adatelemzési problémakör része az adatvezérelt üzletek világában is. A neve: korreláció vs. kauzalitás. Az általános megállapítás az, hogy ok-okozati viszonyt (kauzalitást) soha sem lehet megállapítani visszatekintő elemzésekből. Ezekből mindig csak és kizárólag összefüggést (korrelációt) lehet kikövetkeztetni.
A kauzalitás tényleges megállapítására egyedül az ún. kontrollcsoportos vizsgálatok valóak. Tehát a fenti példában a korrekt megoldás az lett volna, hogy a lányokat két csoportra szedik és az egyik csoportnak müzlit adnak enni minden reggelire, a másiknak pedig akármi mást. Majd figyelik, hogy hogyan változik a testzsír-indexük. Ha itt nyer a müzlis szegmens, akkor már valóban mondhatjuk, hogy a müzli soványabbá tesz.

Ez a módszertan az offline világban elég nehézkes, habár vannak rá példák…
Az online világban viszont nagyon egyszerűen kivitelezhető: ez az, amit A/B tesztelésnek neveznek. Jellemzően a korreláció vs. kauzalitás problémáját akkor érdemes A/B teszteléssel megoldanod, ha egy új funkciót (új feature-t) vezetsz be az oldaladon. Ilyenkor ugyanis el tudod dönteni, hogy valóban az új feature volt hatással a közönséged elköteleződésére (jó eset) vagy a közönséged eleve elkötelezettebb része érdeklődött az adott funkció iránt (kevésbé jó eset).

Összefoglalva: semmilyen kérdőív eredményből, felmérésből vagy visszatekintő elemzésből ne vonj le elhamarkodott következtetéseket! Próbálj helyettük minél több AB-tesztet és/vagy kontrollcsoportos vizsgálatot végezni!

Mester Tomi

Még 3 weboldal használhatósági sztenderd

Az előző cikk folytatásaként most megosztok még 3 weboldal használhatósági ötletet, amit érdemes kipróbálni. Előzőleg is azt írtam, hogy nem szeretem az általánosításokat, mert minden online üzlet egyedi, saját célközönséggel, speciális igényekkel és speciális megoldásokkal. Pl. amit nemrég megfigyeltünk, az az, hogy egy egytermékes cégnél (pl. Evernote) tök jól működik a nagy nyitókép stratégia:
evernote landingMíg egy többtermékes cégeknél (pl. e-digital) érdemes egy helyett több képet, több lehetőséget megvillantani.
Ez csak egy példa, de a lényeg, amiket itt leírok, azok nem általános megoldások, hanem ötletek arra, hogy miket érdemes AB-tesztelni.

1. A lead-magnet-et emeld ki, ne a gombot
Az előző cikkben  arról is írtam, hogy a piros gomb majdnem mindig legalább 20%-kal megtolja a konverziót. És ez így is van. Azonban az egyik ügyfelünknél érdekes módon a hírlevél-feliratkozásnál, amikor az AB-tesztben pirosra cseréltük a gombot, nem történt változás. Kb. ugyanannyi klikk jött a pirosról, mint a szürkéről vagy a feketéről.
A “FELIRATKOZÁS” gomb színét hiába cserélgettük, ettől nem lett vonzóbb maga a feliratkozás lehetősége. Ekkor jöttünk rá, hogy amivel kísérleteznünk kell az az ajándék, a “lead-magnet”, amit adunk a feliratkozásért, jelen esetben egy 1000 Ft-os kupon. Ha kiemeljük jobban, hogy itt bizony egy 1000 Ft-os kedvezményről van szó (tehát ezt írtjuk nagyobb betűvel, esetleg pirossal) – a gombot pedig cserélhetjük “FELIRATKOZÁS” helyett “KÉREM A KUPONOM”-ra: máris emelkedik a konverzió. A lead-magnet a fontos, nem a gomb maga.

2. Embereket szeretünk nézni
Pszichológia 101: emberekként embereket szeretünk nézni. Tegnap beültem egy VWO.com-os webináriumra, ahol több esettanulmányban is bemutatták, hogy egy fotó egy emberről a honlapon növeli a hitelességet és ezen keresztül a konverziót. Az egyik legegyszerűbb példa, egy call-to-action (avagy call-Jason) gomb tesztelése volt:
contact JasonEz ugyebár 1,5-szer annyi megkeresést jelent Jason-nek.

A VWO-s tudást én még annyival egészíteném ki, hogy a megfigyelések szerint SOSE használj stock-photo-kat, mindig csak egyedi képeket.

UPDATE: Szigeti Attila barátom pont tegnap küldött egy érdekes TechCrunch cikket, ahol azzal kísérleteztek, hogy vajon a férfi vagy  a női fotó hoz magasabb elköteleződést:

clicktale heatmapAz eredmény pedig egyértelmű szignifikánsabb magasabb az elköteleződés, ha férfi van a képen. (Megjegyzés: ez persze már tényleg eléggé célcsoport és termékspecifikus kérdés – de azért egy jó ötlet a tesztelésre).

3. Bal felső sarok –» Jobb alsó sarokheatmap

Akármelyik honlapodnak is nézed meg a hőtérképes elemzését (pl. Mouseflow-val), mindig ugyanezt fogod tapasztalni:
– a kattintások számának a hőtérképe
– az egérmozgatás intenzitásának a hőtérképe
– sőt! szemmozgás-vizsgálattal bizonyítva egyáltalán a szemmozgás hőtérképe is:

a bal felső saroktól a jobb alsóig szépen egyenletesen kihűl. Persze, ha beteszel egy nagy CTA gombot a jobb alsó részre, még érhetsz el vele magasabb konverziót, de az tény, hogy akármilyen üzenetet jelenítesz meg: a bal felső sarokban van a legnagyobb túlélési esélye!

Remélem érdekesnek és hasznosnak találtad ezt a cikket!
Ne feledd, jövő hét hétfőn (04.13.) Big Data Webinár, ahol ehhez hasonló weboldal használhatósági kérdésekkel is fogunk foglalkozni.

LINK: http://adatstrategia.eventbrite.co.uk

Mester Tomi

Big Data webinár II. rész — STARTUP + ADAT — stratégiák nem csak startup-oknak

(Ha nem voltál az I. részen, ne ijedj meg, anélkül is érteni fogod) A II. rész több stratégiával, több módszertannal és több esettanulmánnyal.
Itt tudsz regisztrálni:     adatlabor3.eventbrite.co.uk

Adatlabor logoIdőpont: Március 18. szerda 18.00-19.30

A tartalma pedig:
Az adatelemzés az (online) üzleti stratégia szerves része. Ezzel értheted meg a felhasználóidat: mik a problémáik és hogyan tudsz nekik ebben segíteni. Ez pedig hosszú (és rövid) távon számodra is profitábilis. De hol is érdemes kezdeni? Ez a webinárium rendet rak a káoszban és olyan módszertanokat és példákat mutat be, amelyek a gyakorlatban hasznosíthatóak.
(Note: a webinárium akkor is hasznos, ha éppen nem startup-on dolgozol, de szeretnéd az online üzletedbe bevezetni az adatvezérelt szemléletet.)

Tárgyalt módszertanok:
– AARRR (Dave McClure): Tesztelési stratégiák és fejlődési pontok adatvezérelt meghatározása.
– 4DX (The 4 Disciplines of Execution): Mérhető célok beállítása, a köztük levő összefüggések megkeresése és a célirányos üzletfejlesztés.
– E-commerce startup mérések
– A/B tesztelés: best practice-ek (és worst practice-ek).
– Mi az a Big Data igazából? Mikor van rá szükség? Hogyan lehet implementálni?
– Esettanulmányok

A gyakorlatban az Adatlaborral mi magunk is ezeket az adatelemzési stratégiákat és módszertanokat használjuk, a saját ügyfeleinknél, úgyhogy 100%-osan valós üzleti példákból merítkezünk.
75 perc + Q&A

Mester Tomi adatlabor
fotó: Hámori Zsófia

Előadó:
Mester Tomi üzleti intelligencia elemző és tanácsadó, az adatlabor.hu alapítója és szakmai vezetője. Növekedésben levő cégeknek segít az adatelemzési és big data stratégiájuk kidolgozásában – továbbá abban, hogy ezeket az eszközöket a vevőszerzés, a magasabb vevőelégedettség és végeredményben persze a több profit elérésére tudja felhasználni minden partnere. Korábban a Prezi.com-nak dolgozott. Jelenlegi ügyfelei az e-kereskedelem, az online média és az online szolgáltatások területéről érkeznek.
Másik szenvedélye a nyilvános beszéd. Alapítótagja és CC-szintű beszélője az első magyar nyelvű Toastmasters klubnak. Előadó továbbá adatelemzés témában olyan fórumokon, mint a TEDx, BI Forum, Internet Hungary, PechaKucha Nights, Global E-commerce Summit 2015 @Barcelona, stb. Több info itt.

Ára: 4000 ft + ÁFA

Tehát a jelentkezés mégegyszer:
LINK: adatlabor3.eventbrite.co.uk
ÉS A GYORS REG:

Tomi